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Totally asymmetric simple exclusion process with Langmuir kinetics
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We discuss a class of driven lattice gas obtained by coupling the one-dimensional totally asymmetric simple
exclusion process to Langmuir kinetics. In the limit where these dynamics are competing, the resulting non-
conserved flow of particles on the lattice leads to stationary regimes for large but finite systems. We observe
unexpected properties such as localized boundéligmain wallg that separate coexisting regions of low and
high density of particlegphase coexistengeA rich phase diagram, with high and low density phases, two and
three phase coexistence regions, and a boundary independent “Meissner” phase is found. We rationalize the
average density and current profiles obtained from simulations within a mean-field approach in the continuum
limit. The ensuing analytic solution is expressed in terms of LamW®éfunctions. It allows one to fully
describe the phase diagram and extract unusual mean-field exponents that characterize critical properties of the
domain wall. Based on the same approach, we provide an explanation of the localization phenomenon. Finally,
we elucidate phenomena that go beyond mean-field such as the scaling properties of the domain wall.
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[. INTRODUCTION Zhang(KPZ) equation[8] and its cousin, the noisy Burgers
] . equation[9]. In contrast to such ring systems, open systems
Many natural phenomena driven by some external field ofyith particle reservoirs at the ends exhibit phase transitions
containing self-propelled particles evolve into stationaryupon varying the boundary conditiofs0]. This is genuinely
states carrying a steady current. Such states are characterizgifferent from thermal equilibrium systems where boundary
by a constant gain or loss of energy, which distinguishegffects usually do not affect the bulk behavior and become
them from thermal equilibria. Examples range from biologi- negligible if the system is large enough. In addition, general
cal systems like ribosomes moving alongRNA or motor  theorems do not even allow equilibrium phase transitions in
molecules “walking” along molecular tracks to ions diffusing one-dimensional systems at finite temperatyiethe inter-
along narrow channels, or even cars proceeding on highactions are not too long-ranggl1].
ways. In order to elucidate the nature of such nonequilibrium Yet another difference between equilibrium and nonequi-
steady states a variety of driven lattice gas models have beéiRrium processes can be clearly seen on the level of its dy-
introduced and studied extensivel§]. Here we focus on hamics. If transition rates between microscopic configura-
one-dimensional1D) models, where particles preferentially tions are obeying detailed balance the system is guaranteed
move in one direction. In this context, the totally asymmetrict0 evolve into thermal equilibriurfil2]. Systems lacking de-
simple exclusion procesTASEP) has become one of the tailed balance may still reach a steady state, but at present

paradigms of nonequilibrium physictor a review see Refs. tNeré are no universal concepts like the Boltzmann-Gibbs
[2-5)). In this model a single species of particles is hc)ppingensemble theory for characterizing such nonequilibrium

unidirectionally and with a uniform rate along a 1D lattice. steady states. In most instances one has o resort to solving

: . : ) nothing less than its full dynamics. It is only recently that
T_he onIy_ interaction between the partlcle_s is hard-core repuI('exact(nonloca} free energy functionals for driven diffusive
sion, which prevents more than one particle from OCCUPy'n%ystems have been derivgt#,15
the same site on the lattice; see Fig. 1. vl

It has been found that the nature of the nonequilibriu
steady state of the TASEP depends sensitively on the bou:a]oupled to a bulk reservofiLangmuir kinetics(LK)]; see

ary conditions. For periodic boundary conditions the Systenty, > are particles adsorb at an empty site or desorb from
rt_aaches a gteady state of constant density. Interestm_gly, qegh occupied one. Microscopic reversibility demands that the
sity fluctuations are found to spread faster than in a d'ﬁus'vecorresponding kinetic rates obey detailed balance such that

behavior[6]. This can be understood by an exact mappingthe system evolves into an equilibrium steady state, which is

[7] to a growing interface model, whose dynamics in the o described within standard concepts of equilibrium sta-

continuum limit is described in terms of the Kardar-Parisi-yigtica| mechanics. If interactions between the particles other
than the hard-core repulsion are neglected, the equilibrium
density is solely determined by the ratio of the two kinetic
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FIG. 1. lllustration of the totally asymmetric
_ simple exclusion process with open boundaries.
L \” el /X$ @ The entrance and exit rates at the left and right
‘) L }‘ \,’ end of the one-dimensional lattice are givendy

-I—-—-Il—-—- I I .. -"[-_K and B3, respectively.

dard concepts of equilibrium statistical mechanics. Driventhem a finite fraction along the lattice before detaching.
lattice gases such as the TASEP evolve into a stationary noff-hen, particles spend enough time on the lattice to “feel”
equilibrium state carrying a finite conserved current.their mutual interaction and, eventually, produce collective
Whereas such nonequilibrium steady states are quite sengffects. In summary, competition between bulk and boundary
tive to changes in the boundary conditions, equilibriumdynamics in large system{®>1) is expected if the kinetic
steady states are very robust to such changes and dominatedesw, and wp decrease with increasing system sizeuch
by the bulk dynamics. In the TASEP the number of particlesthat thetotal ratesQ, and Q) with
is conserved in the bulk of the one-dimensional lattice. It is
only through the particle reservoirs at the system boundaries Qa=wpN, Qp=awpN (1)
that particles can enter or leave the system. In LK the particle
number is not conserved in the bulk. Particles can enter oare kept constant with.
leave the system at any site. Depending on whether we con- The competition between boundary and bulk dynamics is
sider a canonical or grand canonical ensemble, the lattice & physical process that has, to our knowledge, not yet been
connected to a finite or infinite particle reservoir. Unlike thestudied in the context of driven diffusive systems. In previ-
steady state of the TASEP, the equilibrium steady state of Lkous models emphasis was put on the analysis of boundary
does not have any spatial correlations. induced phenomena in driven gases of mono- or multi-
Combining both of these processes may at first sight seerspecies of particlef4,5,18-21, in the presence of interac-
a trivial exercise since one might expect bulk effects to beions (see, e.g., Refd22,23), disorder[24,2] or local in-
predominant in the thermodynamic limit. This is indeed thehomogeneitied26,27), particles with sizes larger than the
case for attachment and detachment ratgsand wp, which  lattice spacing[28,29, lattices with different geometries
are independent of system sixeFor large but finite systems (e.g., multilanes lattice gas€30]), or systems in the pres-
interesting effects can only be expected if the kinetics fromence of several conservation lagsr a review see, e.g., Ref.
the TASEP and LK compete. Then, as we have shown ref21]).
cently [17], novel behavior different from both LK and the  In this paper we explore the consequences of particle ex-
TASEP appears. In particular, one obserphase separation change with a reservoir along the tra@kk) on the station-
into a high and low density domain for an extended region inary density and current profiles and the ensuing phase dia-
parameter space. gram of the TASEP. A short account of our ideas has been
When should one expect competition between bulk dy-given recently{17], where we have introduced the model and
namics(LK) and boundary induced nonequilibrium effects have shown how our Monte Carlo results can be rationalized
(TASEP? Let us consider the following heuristic argument. on the basis of a mean-field theory, which we also solved
A given particle will typically spend a time~ 1/wp on the  analytically. The purpose of the present paper is to give a
lattice before detaching. During this “residence” time thecomplete and comprehensive discussion of the topic. We will
number of sites1 explored by the particle is of the order of present results from Monte Carlo results for the full param-
n~ 7. Hence, for fixedwp, the fractionn/N~1/(wpN) of  eter range of the model including the particular case where
sites visited by a particle during its walk on the lattice wouldon and off rates equal each other, which were left out in our
go to zero as\—ce. Only if we introduce a “total” detach- short contribution[17] due to the lack of space. In addition,
ment rate by()p=Nwp and keep it constant instead of, as  we will give the full reasoning for the derivation and analyti-
N—oo will the particle travel a finite fraction of the total cal solutions of our mean-field theory. Here, additional in-
lattice size. Similar arguments show that a vacancy visits asight is gained by identifying a branching point that explains
extensive number of sites until it is filled by attachment of aall the features of the density profiles and phase diagram
particle if wp scales to zero as,=Q,/N with a fixed “total”  analytically. In particular, we show that a new critical point
attachment raté€),. In other words, competition will be ex- organizes the topology of the diagram and leads to unex-
pected only if the particles live long enough such that theipected phenomena already briefly discussed in Héi. In
internal dynamics or the external driving force transportsrecent work, Evanet al. [31] and Popkowet al. [32] have
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Y ® FIG. 2. lllustration of Langmuir kineticswp
D A and wp denote the local attachment and detach-
e ment rates.
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rephrased the mean-field analysis first given in Ref] and  the Monte Carlo simulation. Then follows a key section of
reproduced some of our results. The mean-field equationghe paper, a detailed development of the mean-field approxi-
are, however, left in their implicit form and thus miss the mation and the resulting “Burgers’-like equations in the con-
interesting features we will obtain from the identification of atinuum limit. Here we also discuss a series of features of
branching point. . these equations which will turn out to be crucial for the un-
These effects differ from those known in reference modelsjerstanding of the ensuing density and current profiles.
of equilibrium and nonequilibrium statistical _mechanics such  |n sec. IV an analytic solution of the continuum equations
as LK and the TASEP. Indeed, the coupling between thes gerived and compared to simulation results. We start the
TASEP and LK, as introduced above, produces new phenomyisssion for the special case that on and off rates are iden-

enr? apvd t?xr:eln\(/jvs itrr:e g\te:ejsp }owardAsysten;s l:Nh'Ch. btrﬁal al. Though simpler to analyze, this case is somewhat arti-
conservation 1aws i a nontrivial way. AS we shall See in icial as it requires a fine-tuning of the on and off rates.

next section, these features emerge already at a level of prop:- . :
erties of the microscopic dynamics in configuration Space%enencally, one expects on and off rates to differ. Then the

described by the master equation mathematical analysis becomes significantly more complex.

Recently a variant of our model has been suggested b¥Ve are still able to give an explicit analytical solution in

Popkovet al. [32]. Upon supplementing the Katz-Lebowitz- terms of so—call_ed Lar_nbert functio_ns, which allows us to
Spohn model by Langmuir kinetics and analyzing it within identify a branching point that explains all the features of the
the mean-field approach similar [@7], an even richer sce- dens_lty profiles gnd p_hase dlagram_analyncally. In particular,
nario for the stationary density profile is obtained that in-We find a special point that organizes the topology of the
cludes the emergence of localized downward domain wall§liagram. In Sec. V we discuss the properties of the domain
and the appearance of several “shocks” separating three di¢@ll characterizing the phase coexistence upon changes of
tinct phases. It is also noted in R482] that in general it the_ model parameters. In partl_cular, we show that in_the Vi-
may be important to replace the mean-field current by th&mlt_y_of the SpeCIa_I point m_entloned above the domain wall
exact current in the stationary state. exhibits nonanalytic behavior similar to a critical point in

In addition to its fundamental importance for nonequilib- continuous phase transitions. We derive the critical expo-
rium physics in general, competition between bulk dynamicd?€nts and the scaling related to the amplitude and position of
and boundary effects are ubiquitous in nature, in particulath® domain wall. A conclusion, Sec. VI, summarizes our re-
biological phenomena. The TASEP has actually been introSults and provides additional arguments on the phenomenon
duced in the biophysical literature as a model mimicking the®f phase coexistence. Last, we discuss some discrepancies
dynamics of ribosomes moving along a messenger RNA)etwe.en the mean-ﬁeld approgph_ and the simulation results
chain[33]; for generalizations of these studies, see the recerind discuss a possible reconciliation.
work in Refs.[29,34. Also some aspects of intracellular
transport show' close resemblance to our model. For ex- Il. THE MODEL
ample, processive molecular motors advance along cytoskel-
etal filaments while attachment and detachment of motors In this section we are going to describe the model in some
between the cytoplasm and the filament od@%. Typically ~ detail. We will also put it into the context of network theo-
kinetic rates are such that these motors walk a finite fractiomies. This will help us to pinpoint the differences between the
along the molecular track before detaching. This falls wellTASEP and LK dynamics and show how a model combining
into the regime where we expect stationary states whoskoth aspects will lead to emergent properties. Finally, we
properties differ from the known phenomenology of TASEPbriefly review the key ideas of the Fock space formulation of
and LK. Recently, it has been shown that such dynamics cagtochastic particle dynamics. In later sections this formula-
be relevant for modeling the filopod growth in eukaryotic tion will be used for an analytic discussion of the model.
cells produced by motor proteins interacting within actin
filaments[36]. Finally, our model could also be relevant for
studies of surface adsorption and growth in the presence of
biased diffusion or for traffic models with bulk on-off ramps ~ In the microscopic model we consider a finite one-
[37]. dimensional lattice with sites labeléd1, ... N (see Fig. 3

Since our paper contains a rather comprehensive discugnd lattice spacing=L/N, whereL is the total length of the
sion of the topic, we will give a detailed outline to provide lattice. The sitd =1 (i=N) defines the lef(right) boundary,
the reader with some guidance through the analysis. In Sewhile the collection=2, ... N-1 is referred to as the bulk.
Il we define the model by its dynamic rules and make a The microscopic state of the system is characterized by a
connection to its stochastic dynamics on a network. Thougldistribution of identical particles on the lattice, i.e., by con-
the relation between stochastic dynamics and networks iigurationsC={n,-; .}, where each of the occupation num-
interesting to fully understand the peculiar features of thebersn; is equal to either zer@zacancy or one(particle). We
model introduced by the combination of conserved dynamicémpose a hard core repulsion between the particles, which
and on/off kinetics, it may be skipped for the first reading.implies that a double or higher occupancy of sites is forbid-
We then present the problem in terms of a Fock space forden in the model. The full state space then consistsMof 2
mulation and discuss the symmetries of the model, both kegonfigurations.
features for the subsequent formulation of the mean-field The statistical properties of the model are given in terms
theory. In Sec. lll we briefly discuss some technical details off the probabilitiesP(C,t) to find a particular configuration

A. Definition of the dynamic rules

046101-3



PARMEGGIANI, FRANOSCH, AND FREY PHYSICAL REVIEW E/0, 046101(2004

@particle  +_"yvacancy 2 @

FIG. 3. Schematic drawing of the totally asymmetric simple exclusion process with bulk attachment and detgtFimEne entrance
and exit rates at the left and right end of the one-dimensional lattice are givenand B, respectively;w, and wp denote the local
attachment and detachment rates.

C={n;} at timet. We consider the evolution of the probabili- weighted by the corresponding transition rate which can be
ties P described by a master equation: read off from the dynamic rule&)-(e). Due to the local
dynamics the network is very dilute. A given node in the
dP(C.1) network is connected to a maximum numi@iN) of nearby
dt configurations. Nevertheless, any configuration can still be
reached from any point within the network. In other words
Here,W,_ is a non-negative transition rate from configu- the network is connected and does not break into disjunct

rationC to C’. As usual, master equations conserve probabiliPieces. In addition, every node has at least one ingoing and
ties. The microscopic processes connecting two subsequef€ outgoing link. This guarantees that the system is ergodic,

configurations are local in configuration space. Out of the? Igast ashlong N is Izinitgz and allbstates are fe%?}{rr‘feg]-
possible 2 x 2N transitions, we consider only the following n such a network a distance between two dilerent con-

; : ; : ... figurations can be defined as the minimal number of steps
eIe(g)e;:at[]yes;ﬁgiszéonneﬁT % gelgt;t?é)lgnc?aﬁqzmurt%“grt; " required to connect them. Note that the “architecture” of the
+1 if unoccupied Wiif.lltljli’]it rate'p jump network corresponding to a pure TASEP is very different

A X . . from a pure LK; see Fig. 4 for an illustration.
.(b) at the site =1 a particle can enter the lattice with rate The TASEP network is characterized by large fluctuations
«a if unoccupied; and

tthe sitd =N el | the latti ith rat in th_e con_nectivi'_[y. Take for example th_e comple_tely filled
P .]chcac p'eejl @=INa particle can leave the latlice with Tat€ ¢ nfiguration. This state can only be left if the particle at the
if occupied.

g . ) right end of the lattice is ejected from the system. Similarly,
Additionally, in the bulk we assume that a particle

: SIS a configuration described by a step functiogF0O(X;—Xp)
(d) can leave the lattice with site-independent detachmeq}vith a completely filled lattice to the left and a completely

= 2 Wer_ePC' ) = We_eP(CH].  (2)
c'#C

rate wp; and em ; ; :
: o . pty lattice to the right oky can only be left by a single
me(r?g can fill the site(if empty) with a ratew, by attach- process where the rightmost particle is hopping forward. We

call such and similar states “periphery states” since they are
linked to the rest of the network by a single or only a few

) L outgoing and ingoing links. This is to be contrasted with
cessegd) and(e) define a Langmuir kineticg16]. Wg have  «ynical states” for a given density, where particles are more
taken the attachment and detachment rates to be independejfitiess randomly distributed over the lattice. Then, the con-

of the particle concentration in the reservoir, i.e., we hav&jitional probability that an empty site is in front of a filled
assumed that the Langmuir kinetics on the lattice is reactioie i pe finite. In other words, there will be an extensive

and not diffusion limited. The effect of diffusion in confined [ mper of pair¢1,0) on the lattice. This implies that a typi-
geometry has been studied in RES8]. A schematic graphic cal state will be connected with an extensive numbeX) of

representation of the resulting totally asymmetric eXC|USi°rHirected ingoing and outgoing links to other nodes in the

model with Langmuir kinetic§17] is given in Fig. 3. network. Similarly, the shortest path connecting two non-

Once we know the dynamic rules of the stochastic pro'neighboring configurations has a broad length distribution.

cess, one may introduce the notion of neighboring configus: . )
rations forC and(’, if they differ only by a small fraction Given two randomly chosen sequences of occupation num

. . . bersn,=0 andn;=1 (i.e., nodesone has to ask, how many
[O(1/N)] of the corresponding occupation numbers._Thl_sIocal moves of the typea) to (c) (i.e., links are needed to

Nransform one sequence into the other. In general, there will
be a distribution of paths connecting these nodes. The short-
est connection may be only a few links if local rearrange-
ments of particles are sufficient for matching the microscopic
The Markovian dynamics of the system can be repreconfigurations. It seems plausible that this is the case for
sented in terms of a networlgraph), where the configura- such microscopic configurations, whose coarse-grained den-
tions of the stochastic process correspond to the nodes  sity profiles are identical or at least very similar. If the spatial
ticeg of the network. Each transition allowed by the profiles of the coarse-grained densities corresponding to the
dynamics is represented as a directed litgddge and two configurations differ significantly, one expe@$N?) lo-

Processes$a)—(c) constitute a totally asymmetric simple
exclusion process with open boundarigs-5], while pro-

terms of networks as described in the following section.

B. Stochastic dynamics and networks
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FIG. 4. lllustration of the net-
‘0N j O(N) . work architecture corresponding
0(1) : I to the totally asymmetric simple
exclusion procesyTASEP and
<> Langmuir kinetics(LK).
_______ N N
/
o(1)
periphery node < >
o) typical node ON)
O(N)
TASEP network LK network
cal rearrangements to be necessary for matching the micro- Klel
scopic configurations. This is simply a consequence of par- P(C) = K+ DV 3

ticle conservation in the bulk. For example, to completely

empty a totally filled state obviously requir€¥N?) steps. In  Here|c| ==N;! ny is the number of occupied sites in the bulk
addition, distances between two configurations in a TASERindK = w,/ wyp, is thebinding constantNote that the equilib-
network can also be highly asymmetric. Consider a configurium distribution of LK can be characterized by a Boltzmann

rationC corresponding to a node at the periphery of the netweight upon introducing an effective Hamiltoniat =
work connected to a configurati@gi. Then the correspond- _kBTziN:—Zl n, In K. The casé& =1 has an interesting topologi-
ing reverse step does not exist, and in order to return tea| interpretation since the links in the LK network lose their
configurationC one has to make a large loop in configuration directionality and the effective Hamiltoniah evaluates to
space. In summary, a network corresponding to TASEP corg,
tains onIy directed links. A characteristic feature is its het- In contrast, the tota”y asymmetric exclusion process does
erogeneity in the connectivity of nodes and distances benot satisfy the detailed balance condition
tween nodes. The network contains loops, many of which
may be very long due to the conservation law in the bulk. Wer_¢P(C") =We_ e P(C),

This has to be contrasted with the architecture of a net-
work corresponding to LK. Here, the connectivity of all and evolves into a nonequilibrium steady state. Actually, if
nodes is independent of the particular configuration. Sincene would assume detailed balance along a closed directed
each occupation number at a given sité can be indepen- loop in the TASEP network, one would be led to the conclu-
dently changed, the number of links outgoing from a node ision that all probabilities along the path have to be zero.
simply N. For each outgoing link there is an ingoing link This, in turn, would contradict the ergodicity of the finite
with weights related by detailed balance. Moreover, any twasystem.
configurations can be reached by at mgtansitions. Since The network analogy discussed above can now be used to
there is no conservation law, only local mougmrticle at- understand why a stochastic dynamics combining the totally
tachment or detachmerdire necessary. The distance of two asymmetric exclusion process and Langmuir kinetics is in-
configurations(along the shortest patlin a LK network is  teresting and shows a range of features not contained in the
d(c,c)=2=NHn—n/| [40]. Since the order of the necessary TASEP or LK alone. We have seen that the number of links
attachment and detachment processes is irrelevant, the numecessary to connect two non-neighboring states in the
ber of such shortest paths is highly degenerate and depen@&SEP[O(N?)] is much larger than in LKO(N)]. Then, if
only on the distance ad!. In summary, the LK network is we take both the weights for hopping and the weights for
not directed, very homogeneous, highly connected, and corattachment and detachment to scale the same way, LK dy-
tains many loops of all sizes. namics will dominate due to its higher connectivity. In order

An important distinction between LK and the TASEP canto have competition, the weight of each LK link has to be
be clearly seen if one compares the nature of the correspondecreased as prescribed in the Introduction such that the
ing stationary states. Langmuir kinetics has a solution deweighted path lengths of the TASEP and LK are comparable.
scribed in terms of the thermodynamic equilibrium distribu- Yet another way to generate competition would be to only
tion: allow a finite (nonextensivenumber of sites to cause attach-
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ment and detachment with a system-size-independent ratse can then utilize standard approximation schemes of
[41]. The network structure of the totally asymmetric exclu- many body theory.

sion process with Langmuir kinetics also indicates why stan-

dard matrix product ansatz methods could be rather difficult D. Symmetries

to implement. - : .
The system exhibits a particle-hole symmetry in the fol-

lowing sense. A jump of a particle to the right corresponds to
C. Fock space formulation of stochastic dynamics a vacancy move by one step to the left. Similarly, a particle
) ] ) ) entering the system at the left boundary can be interpreted as
It is sometimes convenient to formulate problems in sto- yacancy leaving the lattice, and vice versa for the right
chastic particle dynamics in terms ofigantum Hamiltonian  pondary. Attachment and detachment of particles in the
representatiorinstead of a master equation. This formalismp ik is mapped to detachment and attachment of vacancies,

was developed already some time ago by several groungspectively. Therefore, one can easily verify that the trans-
[42-44. In the meantime it has found a broad range of aptqmation

plications(see, e.g., Ref45]). We refer the reader for details

to various review article§5,45 and lecture notef46,47. N(t) < 1 —np(t), (59
In our case, the occupation numbe¥&’) constitute in a

natural way state space functions by measuring whether site a— B, (5b)

i is occupied(n;=1) or not (n;=0) in configurationC. The

corresponding Heisenberg equations fiigt) then read Wp > @p (5¢)

leaves Eqgs(4a) and(4b) invariant. Due to this property we
can restrict the discussion to the caggs> wp and wa=wp,
. . i.e., to K>1 and K=1, respectively. Eventually, foiv,

+ wp[1-Hi(O] - 0phi(t) (43) =wp=0, one arrives back at the TASEP respecting the same
for any site in the bulk, while for sites at the boundaries oneParticle-hole symmetry described above.
obtains

S0 =4O -R,0] - AT -]

Ill. SIMULATIONS, MEAN-FIELD APPROXIMATION,

d
d_tﬁl(t) = a[1 -Ay(t)] - A (O[L = A(t)], AND CONTINUUM LIMIT
(4b) In this section we describe the Monte Carlo simulations
d (MCS) and the mean-field approximatiaiMFA) we have
d—tﬁN(t) =y (D[L =Nt ] = Bhg(). used to compute the stationary average prdfile and the

average currenfj)=(A.(1-fi,,)).
The first line of Eq.(44) is the usual contribution due to the

TASEP. Introducing the current operator A. Simulations

L(t) =N(H)[1 - (D], We have performed Monte Carlo simulations with random
) ) _ N sequential updating using the dynamical rules<e) and
one can rewrite the right-hand side of this line jas—ji.  evaluated both time and sample averages. The resulting pro-

which is a discrete form of the divergence of the currentfiles coincide in both averaging procedures for given param-
This part defines a dynamics which satisfies particle numbegters and different system sizes. In the simulations, stationary
conservation. The second line of Ega) represents the ad- profiles have been obtained either ovef line averages
ditional Langmuir kinetics, which acts as source and sinkyith a typical time interval=10 N between each step of

terms in the bulk. ~averaggor over the same number of samplasthe case of
These equations can now be understood as equations @§mple averaggs

motions for a quantum many body problem. There are dif-
ferent routes to arrive at a solution. For one-dimensional
problems there are many instances where exact methods are
applicable[5]. Coherent state path integrals are useful to Averaging Eqs(4a) and(4b) over the stationary ensemble
explore the scaling behavior at critical poini45,46,48. relates the mean occupation number to higher order correla-
One can also try to analyze the equations of motion directlyion functions. The mean-field approximation consists in ne-
[49,50. By taking averages of Eq&4a) and(4b) in order to  glecting these correlationgandom phase approximatipn
compute the time evolution offy(t)) one needs the corre- [49,50Q:
sponding averages of two-point correlations suchfas(t) A . N
X[1-(t)]). This two-point correlation function obeys itself (0720 = AOND). 6)

as an equation of motion connecting it to three-point ancHere, averages in the stationary stébeare actually time
four-point correlation functions. Thus we are led to an infi-independent and correspond to either sample or time aver-
nite hierarchy of equations of motion, as is quite generallyages due to the ergodicity property of the finite system. In
the case for quantum many body systgd®,50. To proceed this approximation the average current is given by

B. Mean-field approximation and continuum limit
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<in> = (A(D)[ 1 — (A1 (0)]. Equation(9) has mathematical similarities to the station-
ary case of a viscous Burgers equat[é6i—53
Once we have defined the average density at isiés p;

—(R i € .
(Mi(1)), Eq. (43 results in ap - 5a§p+ (9,0)0xp = Fa= Fop. (10

pi-1(1 = p) = pi(L = pis1) + WAl —pj) —wpp; =0, (73
_ . ) In the Burgers equatiop is identified with the fluid velocity
while at the boundaries, Eqetb), one obtains andj is related to this velocity via=p?/2. In our case, the
oy )= hard-core interaction between particles implies a nonlinear
a1 =py) = pa(1=p2) =0, current-density relationship. As shown above, one finds in
(1= pr) = Bon = 0 the continuum limit a parabolic relatign=p(1-p). Dissipa-
PN-2L2 7PN T PPN = T tion is due to the termed2p, while the sources represent
Note that the average density is a real number withg)  fluxes from and to the bulk reservaff,=QA(1-p) and Fp
<1, and Eqgs(7a and (7b) form a set ofN real algebraic =Qpp. The net source ternF—Fp=(K+1)Qp(p—p) is
nonlinear relations, which can be solved numerically. positive or negative depending on whether the density
An explicit solution of the previous equations can be ob-below or above the Langmuir isotherm,=K/(K+1), ex-
tained by coarse-graining the discrete lattice with lattice conpressed in terms of the binding const&wt Q,/Qp. In con-
stante=L/N to a continuum, i.e., considering@ntinuum junction with the nonlinear current-density relation this im-
limit. To simplify notation, we fix the total length to unity, plies that the density of the Langmuir isotherm will act like
L=1. For large systembl>1, e<1, the rescaled position an “attractor” or “repellor.” If the slope of the current-density
variablex=i/N, 0<x=1, is quasicontinuous. An expansion relation is positive,d,j>0, and the density at the left end

(70)

of the average density(x)=p; in powers ofe yields falls below the Langmuir isotherm, the bulk reservoir will
" 5 feed particles into the system. As a result, the density grows
p(xx &) = p(x) £ edyp(x) + 38°%p(x) + O(e%).  (8)  towardsp, as one moves away from the boundary. In con-

trast, for a negative slope,j<O0, i.e., for densities larger

Taking the scaling of the Langmuir rates, Ed), into ac- . i h N i
count, Egs(7a) and(7b) are to leading order ia equivalent tha_n .1/2’ the density profiles are "repelled” from the Lang
muir isotherm. The latter case can also be understood as an

to the following nonlinear differential equation for the aver- “attraction” by the Langmuir isotherm if read starting from

age profile at the stationary Stae7]: the right end of the system. Then, depending on whether the
e, density at the right boundary is larger or smaller than
PR (2p=D)dxp + Qa(1-p) - Qpp=0. (9 there is a loss or gain of particles from the reservoir as one

moves away from the right boundary into the bulk. This will

Equation(7b) now translates into boundary conditions for turn out to be an important principle for the discussion of the

the density fieldp(0)=a andp(1)=1-p. This can be inter- density profiles in later sections; see, e.g., Sec. IV B.

preted as if the system at both ends is in contact with particle From the analogy to fluid dynamics problerfi$4] one

reservoirs of respective fixed densitesnd 1-3. Note that ~ €Xpects singularities such as shocks in the density ap-

the binding constank remains unchanged in this limit. pear in the inviscid or nondissipative limit— 0*. This con-

For finite &, the average current is writtejr—g/24,p clusion can also be inferred by a direct inspection of the
+p(1-p). In the continuum limite — 0, this suggests that Nonlinear differential equatiod) in the limit e=0. It re-
j=p(1-p) and that the current is boundgds 1/4. However, ~duces to a first order differential equation,
this bound holds only if the density is a smooth function of _ N _
the positionx. We shall show that density discontinuities can (2p = L)op + Qa1 =p) = Qop =0, (1)
arise in the continuum limit. Then, for smal] these discon- instead of a second order one, while the solution still has to
tinuities would appear as rapid crossover regions where ongatisfy two boundary conditions. Such a boundary value
cannot neglect the first order derivative term in the currenproblem is apparentlpverdeterminedHowever, we can de-
definition so that the relatiop=<1/4 needs not to be satis- fine solutions of Eq(11) respecting only one of the boundary
fied. The inequality can be violated also by the additionalconditions. Depending on whether they obey the boundary
contribution arising from current fluctuations neglected inconditions on the left or right end of the lattice we call them
the mean-field approximation; see, e.g., Fig. 10 at the systenie left solution p, and theright solution pp respectively.
boundaries. Then, for 0<e<1 the full solution of Eq(9) will be close

The equations obtained in mean-field approximation ando p,, for positions on the left side of the system and similarly
the subsequent continuum limit still respect the particle-holao p, on the right side. In general, we cannot expect both
symmetry mentioned above. In terms of the continuous avsolutions to match continuously at some point in the bulk of
eraged densityp, the symmetry now readp(x)—1-p(1 the lattice. Instead, for a large but finite system, the solution
-X), a< B,Q,— Qp. Note that a numerical solution of the of Eq. (9) will exhibit a rapid crossover from the left to the
differential equation above necessarily uses a discretizatiomight solution. In the limite — 0* this crossover regime de-
Using a standard algorithm for integrating differential equa-creases in width and eventually leads to a discontinuity of
tions, one would merely recover the original mean-fieldthe average density profile at some positignNote that the
equationg7a) and(7b). discontinuity shows up only on the scale of the system size,
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i.e., in the rescaled variabbe whereas on the scale of the It will turn out that K=1 introduces particular features and
lattice spacing the crossover region always covers a largeequires a specific treatment and discussion. Since it is tech-
number of lattice sites. nically simpler we discuss this case first.

To locate the position of the discontinuiky, in the limit
of large system sizeN>1, i.e.,e — 0", it is useful to derive

a continuity equation for the currert and the sources A. The symmetric case:K=1

Fa,Fp- Consider Eq(9) in the form d,j =F,—Fp, wherej The mathematical analysis is simplified by the fact that
=—¢el2d,p+p(1-p). Integrating over a small region of width the attachment and detachment rates are edugkQp
26x close to x,, one obtains j(X,+X) —j(Xy— ) =(). Then Eq.(11) factorizes to

=fof§(FA—]-‘D)dXESS. In the limit e — 0" the relation sim- B PN
pIif)i(vevs 10 (X + X) =] g(Xy— OX) =So, where we have defined (2p=D(%p =) =0. (14

the left currentj ,=p,(1-p,) and similarly for the right cur- The boundary conditions regd0)=« andp(1)=1-4. Note
rentj ;. Now, for 5x— 0%, the contribution due to the sources that this equation is symmetric with respect to particle-hole
Sy is of orderx yielding thematching conditiorin terms of ~ exchange. Indeed, except for the boundaries, the equation is

the left and right currents invariant under the transformatiop(x)—1-p(1-x). This
i i has important consequences for the density profiles, as will
JalXw) =] 5(X0)- (12)  pecome clear in the following.

The equivalent condition for the densities reads

1. The density and current profiles

Paltu) = 1= Pyl (13 Equation(14) has only two basic solutions. A constant

A discontinuity of the density profile such asdamain wall  densityp,(x)=1/2identical to the stoichiometry in Langmuir
can appear in the system depending on whether the previoygnetics and also the density in the maximal current phase of
condition is fulfilled for O<x,,=<1. Relation(13), therefore, the TASEP. The other solution is a linear profile Ox+C.
defines implicitly where a domain wall is located in the sys-The value of the integration consta@ depends on the
tem. It allows one to compute the domain wall positigras boundary condition. One findS,=« and Cz=1-3- for
well as its heighth,=pp(Xy) = pa(Xs). The domain wall sepa-  solutions, p,(x) and p4(x), matching the density at the left
rates regions of lowjp<1/2) and high densityp>1/2). In  and the right boundaries, respectively. Depending on how the
the ensuing phase c_iiagram this will lead to an extended rehree solutiong,(X), ps(x), and p(x) can be matched, dif-
gime of phase coexistence. _ ferent scenarios arise for the full density profii€). In the

We shall see that in addition to domain walls, there mayso|iowing we discuss the characteristic features of the solu-

appear also discontinuities in the curr¢sb], which are 1o-  tion in each quadrant of the—3 phase diagram for fixefd.
cated at the boundary of the system. We refer to them as (a) Lower left quadrant @, B<1/2. In this case the

boundary layers boundary conditions enforce a density less than 1/2 and

greater that 1/2 at the left and right boundaries, respectively.

IV. ANALYTIC SOLUTION OF THE CONTINUUM This allows for a continuous density profile, where a con-
EQUATION stant density ofp;=1/2 intervenes between the two linear

) ) . ) ) solutions emerging from the left and right boundaries. The

In this section, we will show in detail how one can treat corresponding positions separating the low density from the
the continuum equations, E@9), analytically in the limit  ,aximal current phase,(x,)=1/2, and themaximal cur-
e—0". We shall compare these results with numerical solu; o phase from the high density phage(x,)=1/2, are
tions of Eq.(9) for finite ¢ [56], and with corresponding given byx,=(1-2a)/20 >0 andx :(2,8+2051)/ZQ<1
profiles obtained from Monte Carlo simulations. For therespectiveciy. The phase bounda(g,_)oaf moves to the Iéft
I\/_Iontia Carlo simulation the plotf, vinIIAshon the average den-upon increasing the entry raie—1/2" and similarly X
sity (i) and the average curre(jt)=(f(1-Ni.1). The den- 1~ for the exit-ratef— 1/2". Hence, depending on the
sities and currents obtained from the numerical integration ofalues of the points,, and Xg, One can classify the possible
the mean-field equations at finitewill be indicated asp,  solutions according to the relative ordering of the phase
andj,=—-&/2d,p.+p,(1-p,) in the figures, respectively. boundaries(i) X, <Xg, (i) X,=Xg, and(iii ) X,>Xa.

This discussion will result in a classification of the pos- (i) The density profile is continuous and piecewise linear
sible solutions as a function of the entry and exit rateend  and given by
B, the binding constark=0Q,/Qp, and the detachment rate

Qp (phase diagrain Due to the particle-hole symmetry we Ox+a for 0sx=Xx,,
can restrict ourselves to valués=1. Then, there are two p(x)=11/2 for x,<Xx=<Xg, (15
cases to distinguistK=1 andK>1. ForK=1 the constant Qx-1)+1-p for xg=x=<1.

density profile p;=K/(K+1), given by the Langmuir kinetics

coincides with a point of particular symmetry of the TASEP. One observes a region of three-phase coexistence: a low den-
Indeed, for a density op=1/2 thesystem is dual under sity phase(LD) with p(x)<1/2 andj(x)<1/4 for O<x
particle-hole exchange, the nonlinear term in ). van- <Xx,, a maximal current phaséMC) with p(x)=1/2 and
ishes, and it corresponds to a point of maximal cur{gi.  j(x)=1/4 forx,<X=Xg, and a high density phagelD) with
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FIG. 5. Average density(x) (a) and currenf(x) (b) for param-
etersa=0.4, 3=0.4,0=0.3, andK=1. In this parameter range one  FIG. 6. Average density(x) (a) and curren§(x) (b) for param-
observes a three-phase coexistence: a maximal current phase is f{ersa=0.4, 5=0.1,1=0.3, andK=1. We use the same legend as
tervening between a low and high density phase. The profiles arf# Fig. 5. The bulk profile is almost completely described by the
computed analytically in the inviscid limitdashed linesand nu-  solutionpg matching only the right boundary condition. At the left
merically for e=1073 within a mean-field approximatiorgsolid end, the bulk density does not match the boundary condition. As a
smooth ling, and from Monte Carlo simulatior{solid wiggly line). ~ result, a boundary layer appears. Only there does one find a notice-
Note that, within the resolution of the figures, the Monte Carlo able difference between the profiles of the Monte Carlo simulation,
results and the numerical mean-field results cannot be distinthe numerical computation at finite and the analytic profile for
guished. The analytic density profile is shown for the solutions re~vanishinge.
specting the left and right boundary conditiopg,andpg; we also ) )
show the Langmuir isothermy=1/2. Here we can already illustrate an important feature of our

model. As one can infer from Fig. 7, the current forms a cusp
at the position of the domain wall, witfy(x) andj 5(x) being
monotonically increasing and decreasing functionx,ofe-
spectively. This follows directly from the continuum equa-

rent phase vanishes and the solution becomes a simple Iine' n, Eq.(10), and the density dependence of the source term

profile, continuously matching the densities of the LD and” A~7p=2{(1/2-p), which is positive or negative depend-
HD phase. ing on whether the density is smaller or larger than 1/2.

(iii) Upon further increasing, over g, the intervening Hence the domain wall is located at a maximum of the cur-

maximal current phase is lost and it is no longer possible tgent. In addition, the strict monotonicity of the current also
continuously concatenate the linear density profiles of the N
low and high density phase. There is necessarily a density 08|
discontinuity, located at a poimnt, where the currents corre-
sponding to the right and left solutions match,(x,)
=] g(xy). The position of the ensuing domain wall may be in 04|
or outside of the system. This leads us to further distinguish

between the following three subcases:

a. If x, <0 the density profile in the bulk is above 1/2, 0
i.e., in a HD phase. The profile is entirely described by the
solution pg(x) up to a boundary layer at the left end. One
observes that the boundary layer corresponds to a disconti-
nuity in the current. The bulk currefg(x— 0%) does in gen-

p(x)>1/2 andj(x) <1/4 for x,<x<1. For a plot of the
densities and currents see Fig. 5.
(if) Forx,=xgthe width of the intermediate maximal cur-

02}

eral not match the incoming particle flu1-c«) at the left 0.1t
boundary(see Fig. 6.
b. For 0<x,<1 the domain wall is within the system 0 . s s .
boundaries. Then the density profile connects a LD profile to 0 02 04 06 08 1
a HD profile via a domain wall at positiox,=(Q-a
+B)/2Q) [58]. The density profile is given by FIG. 7. Average density(x) (a) and currenf(x) (b) for param-

etersa=0.2, 3=0.1,0=0.3, andK=1. We use the same legend as

Qx + for 0<x<x in Fig. 5. Only in proximity to the domain wall do the results from

p(x) = { @ AT Awe (16) the mean-field approximation show deviations from the density pro-
Qx-1)+1-p for x,=x=<1. file obtained by Monte Carlo simulation.
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FIG. 9. Average densitg(x) (a) and curreng(x) (b) for param-
etersa=0.35,3=0.8,(20=0.3, andK=1. Note that the curves map

FIG. 8. Average density(x) (@) and currentj(x) (b) for « to those of Fig. 8 by particle-hole symmetry.

=0.8,8=0.35,22=0.3, andK=1. We use the same legend as in Fig.
5. Except for the left boundary layer, the analytic solution is de- _
scribed by the Langmuir densipy=1/2 and thedensityp, match- 2. The phase diagram

ing the right boundary condition. The analysis of the current and density profiles allows one

implies that the domain wall ibcalized A displacement of 0 draw cuts of the phase diagram in the, 3) plane for

the domain wall to the right ok, would result in a current fixed values of). Note that the particle-hole symmetry ren-

j«> s This in turn would increase the influx of particles at ders all diagrams symmetric with respect to the diagenal

the left boundary, which will drive the domain wall back to =8. Depending on the kinetic rat® one can distinguish

its original positionx,, [59]. three topologies. Topologies of the phase diagrams change at
c. The solution fox,,>1 can be inferred by particle-hole critical valuesQ)=1/2 and()=1; see Fig. 11.

symmetry from case a. The low density profile is given by For 0<{<1/2, Fig. 11a), the phase diagram consists of

the solutionp,(x) up to a boundary layer at the right end. seven phases. A three-phase coexistence region LD-MC-HD
(b) Lower right quadrant «>1/2, B<1/2. Here the at the center is surrounded by three two-phase coexistence

density at both left and right boundaries is larger thgn regions LD-HD, MC-HD, and LD-MC. Pure LD, HD, and

=1/2. Two diferent scenarios are possible. In the first scedMC phases are contiguous to the two-phase regions. All lines

nario, the slopé of the density profilgpg(x) (matching the  between different regions represent continuous changes in

density at the right boundarys so small thap(x) is always  the average density. The three-phase coexistence region,

larger thanp,=1/2; this required)<1/2-p. Then, the bulk and two of the two-phase coexistence regi¢dnd-MC and

of the system is in the HD phase with a boundary layer on

the left. This scenario is identical to the previous case a such P @

that there is no qualitative change in the bulk upon crossing 08 |

the linea=1/2. In other words, there is no phase boundary 0.6 kpg

and the system remains in the HD phase. In the second sce- ' |
nario, the slopeQ2>1/2-8 such that we have a phase 04 | pﬂ
boundary between a high density and a maximal current 02 | :

phase. This solution can also be viewed as a limit of the
three-phase coexistence region, where tor-1/2" the 0
phase boundary, leaves the system through the left end and iT
a boundary layer is created replacing the LD reg(see — "
Fig. 8). 0.24[

(c) Upper left quadranta<1/2, 8>1/2. This region in I

. ) . : 21
parameter space is obtained using particle-hole symmetry 0 |

from the results for the lower right quadrant in the preceding 016l ]
paragrapf(see Fig. 9. 0 02 04,06 08 1

(d) Upper right quadrant a, 3> 1/2. Here two boundary
layers are formed, and the bulk of the system is characterized riG, 10. Average density(x) (a) and currentj(x) (b) for pa-
by a constant density equal to 1(e Fig. 10 This corre-  rametersx=0.8,5=0.8,0=0.3, andkK=1. We use the same legend

sponds to the maximal current phase, which remains unas in Fig. 5. The bulk density profile is given by the Langmuir
changed as compared to the TASEP without particle on andensity p;=1/2 which corresponds also to the maximal current

off kinetics. Note again that due t§=1 the density with phase. Due to fluctuations, neglected in the mean-field approxima-
maximal current coincides with the Langmuir isothermtion, the current profile obtained from the simulation exceeds the
p=1/2. value 1/4 at each boundary.
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12 Q becomes larger than 1, the LD-HD coexistence region

@) disappears; see Fig. (t).

B The Langmuir kinetics is approached fét— . Al-

LD | LD-MC MC though the topology of the phase diagram does not change
r r lr anymore, the phases become almost indistinguishable for
large kinetic rates. Here the Langmuir isothepps1/2 oc-

A (Q,y cupies most of the bulk, whereas the LD and HD regions are
a3’ ¥ c:% confined to a vicinity of the boundaries.

LD-HD 1/2-0

1/2

| B. The generic caseK>1

0 &2 1 Though simpler to analyze, the previous cdsel is
1 o) © somewhat artificial as it requires a fine-tuning of thelon and
LD-MC DM | e off rates. Generally, one would expd€t- 1. Due to particle-
B hole symmetry we can restrict ourselvekto- 1. The analy-
Q% sis becomes significantly more complex since the continuum
| MEHP[|Lomere ] HeHD equation for the density, E¢11), no longer factorizes into a

0 12 10 12 1 simple form as foK=1.
o o

1. The density and current profiles
FIG. 11. Cut of the phase diagram on the, 8) plane in the o . .
mean-field approximation fok=1 and different values of): (a) To proceed, it is convenient to introduce a rescaled den-

0=0.3,(b) Q=0.5, and(c) Q=1.0. The case@)~(c) correspond to  Sity of the form

the three different topologies of phase diagrams discussed in the K+1

main text. All lines represent continuous transitions between differ- o(x)=——[2p(x) - 1] -1, (17
ent regions in the(a,B8,K=1,Qp=cons} cut of the four- K-1

dimensional parameter space. The line parallel to the antidiagonal ®here o=0 corresponds to the Langmuir isotherpy

B b/esrt I S0 =K1, Since he densiyt) i bound Wi th ntr
P . B P val [0, 1], the rescaled density(x) can assume values within

right solutionsp, and pg meet the Langmuir isotherrp=1/2) . .
coincide,x,=Xz. The phase boundaries of the LD-HD coexistencetn® interval [-2K/(K-1),2/(K-1)]. Then the continuum

phasex,, =0 andx,=1, correspond to regions in which the domain €quation(11) simplifies to

wall is located at one of the system boundaries. These lines were (K + 1)2

computed by using the matching conditions for the curreji) Aa(X) + 3X|n|g(x)| =Qp (18)
=B(1-p) andjg0)=a(l-a). In (a), we also emphasize the pres- -1

ence of the boundary layers at the left or the right end of the systent,. . . .

These are indicated with the letters “I” and “r,” respectively. Sucgbwect integrations yield

boundary layers remain present in the same regions @3 @tso for |0‘(X)|exda'(x)] =Y(x), (19

increasing(}.

where the functior(x) is
MC-HD) are characterized by continuous density profiles.
This is mainly due to the maximal current phase with density Y() = |o(x )|exp{Q (K+1)
p(x)=1/2. Acting as a “buffer,” this phase intervenes be- BN D k-1
tween the LD and HD phase or connects the LD and HD ) )
phases with the right and left boundary, respectively. Discon@Ndo(Xo) is the value of the reduced density at the reference
tinuities only appear as current and density discontinuitief0intX,. In particular, the ones that match the boundary con-
(boundary layersat the system boundaries. This has to bedition on the left or right end of the system are written:
contrasted with the density profile in the coexistence region (K+1)2
between the LD and HD phase. Here, a density discontinuity Y,(X) = |0(0)|exp{QD X+ 0(0)}7
in the bulk(domain wal), separating both phases, is formed. K-1

It is also interesting to consider the limit — 0, as one
expects to recover the TASEP scenario. Indeed, using the (K +1)?
previous results, it is easy to show that for decrea$inghe Yp(x) = |‘T(1)|EXF7{QD K—1 x-1+ ‘7(1)}7
width of the two-phase regions, as well as that of the three-
phase region, shrinks to zero. The resulting diagram reprovhere the boundary valueg0) and o(1) can be written in
duces the well-known topology of the pure TASEP in theterms ofa andB using Eq.(17) and the boundary conditions
mean-field approximatiof60]. p(0)=a andp(l)=1-p.

Upon increasind) up to the value 1/2, we find the first Equations of the form of Eq.19) appear in various con-
topology change in the phase diagram. The HD and LDtexts such as enzymology, population growth processes, and
phases gradually disappear, leaving only the two-phase drydrodynamicgsee, e.g., Ref61]). They are known to have
three-phase coexistence region€)at1/2; seeFig. 14(b). If ~ an explicit solution written in terms of a special function

2
(X=Xo) + U(Xo)} , (20

(21)
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FIG. 12. The real branché&&,(¢) andW_;(¢) of the LambertwW WY
function. 1Y)
calledW function[61]: o 0O 02 04 06 08 1
X
o(x) =W(Y(x)), o(x)>0,
(22 FIG. 13. Mathematical solutions fa@) the left densityp,(x)
a(X) =W(- Y(x)), o(x)<0. and (b) the right densitypg(x) for K=3, Q5=0.1 and different

values of the entry and exit rate and 8. The solutions which
The LambertWV function(see Fig. 12is a multivalued func-  approach the Langmuir isotherm are those daB<1/2 (thick
tion with two real branches, which we refer to\4(£) and  Jines). The solutions where the branching point coincides with the
W_,(é). The branches merge &&-1/e, where the Lambert right boundary are indicated hy,=0.038 532... an@.=1/2.
W function takes the value -1. The first brandh(¢), is
defined foré=-1/e; it diverges at infinity sublogarithmi-
cally. The second branchlV_;(¢), is always negative and
defined in the domain -k £<0. In the vicinity of the
point ¢=-1/e the functionW(¢) behaves like a square root
of & since one gety,W=W/[(1+W)¢] by the definition of
the LambertW function, W(&)exd W(&)]=£.

Using these properties of the Lambé#t function, the
branch ofW is selected according to the value of the rescalequti
densityo. For o e [-2K/(K-1),-1] the relevant solution is
W_,(=Y), while for o € [-1,0] one obtaind\y(-Y). Finally,
in the intervalo € [0,2/(K-1)] one findsWy(Y).

The solutions are matched to the boundary conditions
the left and right ends according to the entry or exit rates
The left and right solutionsp,(x) and p4(x), are then com-

direct consequence of the analytic properties of the Lambert
W function, which has a branching point at a density 1/2; see
Fig. 134a). With decreasingy the site where,(x) meets the
density 1/2 moves to the right. At a critical value of the entry
rate, «.(2p,K), the branching point of the left solution,
touches the right boundary.
Similarly to the discussion in the previous paragraph, so-
ons matching the right boundary condition are stable only
if B<1/2. The corresponding density profiles, shown as
thick lines in Fig. 18b), are always in a high density regime,
i.e., pp(x)=1/2. If the density at the right boundary matches
e Langmuir isotherm, the right solution is flag(x)=p;.
Otherwise, the source terms do not cancel, leading to a net
: ; . detachment/attachment flux such that the right density pro-
puted from the expressions in Eq&3) upon using the o~ jaq decay monotonically towards the Langmuir isotherm as

ordlinate trfgsformgtion givenh_by IECW)' . f th one moves from the right boundary to the bulk. As a conse-
_ migure provides a graphical representation of the .pOSQUence, the right densitys(x) never crosses the Langmuir
sible set of solutions of the first order differential equation,

X : . isotherm. The density profile fg8=1/2 is anextremal solu-
shysically realizec, one needs to go back {0 e ful equation" SXDILNG the lowest possible density=1/2) and
Py Y ' 9 d highest current(j=1/4) at the right end, which then also

either in its discrete form Eq.7a) or its continuous version T . . -
Eq. (9). Analogous to the 'F,{ASa)EP a solution matching thec_ommdes with the branching point of the Lambitiunc-

density prescribed by the left boundary condition is stablet'on' . .

only if «<1/2[62]. Such solutions are shown as thick lines In canclusion, _for the left rescaled solutien(x), an entry
in Fig. 13a). They are monotonically increasing towards the'ate 0$a$1,/2 implies _:‘K/(K_l)$‘,7<_l' Hence we
Langmuir isothermp,=K/(K+1)>1/2. This can be under- Nave according to the previous analysis

stood as a consequence of the accumulation of particles from

the bulk reservoir via the Langmuir kinetics with increasing

distance from the left boundary. One might now expect that 0,(X) =W_1(= Y,(x)) <O0. (239
the density will finally approach the Langmuir isotherm, but

this is not the case. Instead, we find that the densi{x)

never increases beyond 1/2, where the current reaches f®r the right rescaled solutioms(x), one finds correspond-
largest possible valug,.,=1/4. Mathematically, this is a ingly

046101-12



TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS.. PHYSICAL REVIEW E 70, 046101(2004

08 F"’”/

oef ]
04|
0.2(

0.2
0.1 W

0 . . . A
0 02 0.4X 06 08 10 02 O.4X0.6 08 1 0 02 04,06 08 1

FIG. 14. Average density(x) ()—c) and corresponding current FIG. 15. Average density(x) (a) and currentj(x) (b) for «
j() (b)—<(d) for a,ﬁs% in a parameter regime showing phase sepa=0.3,8=0.1,Q25=0.1, andK=2. We use the same legend as in Fig.
ration. We have chosefip=0.1, K=2 and(a) and (b) «=0.1,8 14. Except the left boundary layer, the bulk density profile is given
=0.1 or(c) and (d) «=0.3,8=0.4. Solid lines correspond to the by the Lambert function, pg=W(Y 5(x)).
numerical solution of the mean-field theory with=1073. Monte

Carlo simulations are shown as a solid wiggly line. The flat dasheqgft gnq right solutions approach the Langmuir isotherm in
line represents the Langmuir isotherm=K/(K+1). The other  {he pulk. In analogy with the cagé=1, the domain wall is
dashed lines represent the analytic solutions given by the brancheggpilized by the current profiles controlled by the boundary
of the LambertW functions matching the boundary conditions on conditions.
the right and left end, respectively. For both cag®sand (c), the In casegii) and(iii ), one of the two phases is confined to
solution matching the left boundary conditigr) is given by the the boundary. Explicit’Iy foxii) the bulk is characterized by
branch of the LambertV function W_4(-Y,). For the solution a HD with a boundary ’Iayer at the left end, see Figal5
marching e ”f”)“ Doundary candiions, one has tgfc(‘")‘smﬁﬂ the " Correspondingly, foriii) the solution exhibits a LD bulk
ranchW,. For (a) the branch oW has the arguments(x), while . . .
for (c) the argument is ¥4(x) (see as illustrated alsoﬁin Fig. 13 g??ﬁ: g;;zmpiglgdpgy E&la;)oundary layer on the right end side

(b) The upper left quadranta<1/2, B>1/2. As dis-

Wo(Yg(x) >0, 0<B<1-p cussed above, fog>1/2 the solutions of the first order
o5(x) =10, B=1-p differential equation, Eq(11), matching the right boundary
Wo(= Yg() <0, 1-p<B=1/2, condition are physically unstable. Instead, the actual density

profile at the right boundary approaches the extremal solu-
(23b) tion Wy(—Yg-1/») of the first order differential equation. The

wherep,=K/(K+1) is the constant density of the Langmuir

isotherm. After the coordinate changkg?), the general solu- 0‘_)8_(a)

tion of the continuum mean-field equation &a+-0*, &¢. | ]
(12), is obtained by matching left and right solutiops and 0.61

pp- The remaining task is now to identify the different sce- 0.4l

narios where domain walls and boundary layers appear. Such -

analytic results are confirmed by the numerical computation

at finite e. 0
(a) Lower left quadrantie, 3<1/2. This is the only case i

where there are solutions that approach the Langmuir iso- I

therm in the bulk and match both boundary conditions. The 0.2t
full density profile is obtained by finding the positiog,
where the left and right currents coincide, i.@,(x,)=1 0.1
—pg(X,). One has to consider three casgp0<x, <1, (i)
Xw<<0, and(iii) x,>1. 0 . . . .
In case(i), a domain wall is formed separating a region of 0 02 04 06 08
low density on the left with a region of high density on the X
right. Depending on whether 15-is above or belowy,, dif- FIG. 16. Average densitp(x) (a) and currentj(x) (b) for «

ferent profiles are observed, see Figgal4nd 14c). Inthe  =0.1,5=0.4,Q,=0.1, andK=2. We use the same legend as in Fig.
casef=1-p, one obtains a flat profile gfz matching the  14. Except the right boundary layer, the bulk density profile is given
value of the Langmuir isotherm,. We note again that the by the LamberW function, p,=W_1(Y(X)).
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density difference to the boundary value is bridged by a P @)

boundary layer, which vanishes in the linait-0*. 08 | 0,
For the discussion of the density profiles in the upper left 06 F——mz o= - B\—‘:

quadrant we can simply parallel the arguments used for the “""ﬁ\

lower left quadrant, once the right solution has been substi- 04t P

tuted with the extremal one. Depending on the matching of 02 |

the current, one finds again three cases, a LD phase, a two- 0

phase LD-HD coexistence, and a HD phase. We conclude i ()

that the phases of the lower left quadrant exten@tel/2 -

with phase boundaries which are independent of the exit rate 0.2}

B, i.e., parallel to thes axis. The HD phase fo8>1/2 has I

some interesting features which are genuinely distinct from 01l

the HD phase fo3<1/2. The density profile in the bulk is

independentf the entrance and exit rates,and 3, at the

left and right boundaries; it is given by the extremal solution 0 o7 07 o5 o8 1

Wo(=Ys-1/2). The density approachggl)=1/2 andhence X

the current maximal possible valug,,=1/4 at theright FIG. 17. Average densitp(x) (a) and currentj(x) (b) for Qp

boundary. These features are reminiscent of the maximal cuEQ.1,K=2, =0.75 andg=0.75. We use the same legend as in Fig.
rent phase for the TASEP. The only difference seems to be4. Except for the left and right boundary layers, the bulk profile
that here current and density are spatially varying along thebtained from the analytic mean-field result is given by the branch
system while they are constant for the TASEP. The essentigls(x)=W(-Y(x)) of the LambertW function computed ford
characteristic in both cases is that the behavior of the system1/2.

is determined by the bulk and not the boundaries. One is

reminded of similar behavior of the Meissner phase in superwall is localized at the point, in the bulk. The boundaries
conducting materials. In the ensuing phase diagram we wilbf the coexistence region in the phase diagram are deter-
hence indicate this regime as the “Meissn@¥l) phase to  mined by those parameters where the domain wall hits either
distinguish it from the HD phase with boundary dominatedthe entrance, i.ex, =0, or the exit of the systenx,,=1. For
density profileg63]. Note also that the parameter range for g>1/2 the density profile only develops a boundary layer
the M phase is broadened as compared to the maximal cugt the right end, but remains unchanged in the bulk. Since the
rent phase of the TASEP. domain wall position becomes independeniBpthe bound-

(c) The remaining quadrantgr>1/2. Ata=1/2, thesys-  aries of the two-phase coexistence region become parallel to
tem is already in the high density phase where the bulk prothe axisa=0. It is important to remark that from the analytic
file does not match the entry rate. Increasiagpeyond the results the left solutiop,, is strictly smaller than 1/2, except
value 1/2 therefore merely affects the boundary layer at thgor the special poiniC in the phase diagram whepe,(1)
left end. The density profile is given by the right solutigf = 3=1/2. Weshall see in Sec. V B that in the vicinity of this
for <<1/2 or the extremal one fq8=1/2 as before; for an point the domain wall exhibits critical properties.

illustration compare Fig. 17. Fg8=1/2 the same conclu- ~ ypon increasingd, the LD phase progressively shrinks to
sion applies as in the preceding paragraph, resulting in g region close to th@ axis, while the size of the two other
Meissner” phase for the upper right quadrant. phases increases; see Figs(al@&nd 18b). A change of to-

Let us conclude this section with some additional Com'pology occurs When the LD phase COnapseS on th|s axis
ments on boundary layers. Boundary layers arise from a misyhich happens upon passing a critical valuekofThis criti-
matCh betWeen the bulk profile and the boundary CO“ditiOﬂ%a' Va'ue depends OQD and can be Computed using the
They can bend either upwards or downwards depending ogxpressions in Eq$13), (233, and(23b). A further increase
whether the left or right boundary rates are above or belowf K results in a decrease of the extension of the LD-HD
the values of the bulk solution at the ends. For example, "?egion in the phase diagram; see Fig(d8Eventually, for
the right lower quadrant of the HD phase, a change from &ery |arge K the average bulk density in the HD and M
depletion to an accumulation layer at the left end of the SYSregions approaches saturatiog,=1.
tem occurs at=pg(0) for <1/2. Similarly, increasingQ)p at fixed K, the same topology
change occurs, as described above; see Fig. 19. However, we
note the different limiting behaviors fofp— 0" and Qp

We discuss the topology of the phase diagram with re-—o. In the first case, we are considering the limit of the
spect to cuts in théwa, B) plane for different values df and  model to the TASEP for a given binding constaft(al-

Qp. We first consider the situation in whidRy is fixed and  though K# 1). The two-phase coexistence region LD-HD
K increases, starting from values slightly larger than unity.shrinks continuously to the line=p. In the same limit, in
Figure 18a) shows the phase diagram fé&=1.1. A low the upper right quadrant, 3>1/2, the M phase approaches
density (LD) phase occupies the upper left of the plane,continuously the MC phase of the TASEP. For a very large
while a high density(HD) and a MeissnefM) phase are detachment rat€p, the right boundary of the LD-HD coex-
located on the right. In between there is a two-phase coexstence phase approaches a straight line at finite entrywrate
istence region(LD-HD). In the coexistence phase a domainthat can be computed from the analytic solution as equal to

2. The phase diagram
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FIG. 18. Cuts of the phase diagrams on ftlag 8) plane ob- FIG. 19. Cuts of the phase diagrams as in Fig. 18<er3 and

tained by the exact solution of the stationary mean-field equatioria) 15=0.01,(b) Q1p=0.05, andc) Qp=0.2. The white circle cor-

(12) in the inviscid limite=0 for Qp=0.1 and(a) K=1.1, (b) K responds to aodal point of the systera\V" defined by the condition
=3.0, and(c) K=6.0. The two lines, corresponding to regions in a=B=1-p=1/(K+1). Every linex,=0 crosses this point for an
which the domain wall is located af,=0 andx,,=1, are obtained increasingQp.

by using the matching conditions for the currenjts1)=8(1-2)

andjp(0)=a(1-a). In (a), we emphasize several features. With the o gtom parameters. While the results for the symmetric case
letters “I” and “r" we indicate the presence of boundary layers intheK:1 are more or less trivial, novel properties emerge for
average density profile, forming at the left or the right end of theK>1_ In this section, we shail start from the description of

system, respectively. In the lower left quadrant, the left and righ . -
boundary layers form whenever the domain wall exits the system otrt1he domain wall behavior on the, 8) plane of the phase

the left and right end side. At the phase boundary between the ngiagram along trajectories of constant entry or exit rates,

and M phases, fog=1/2, aboundary layer forms at the right end. '€SPectively.

Note that also in the M phasgg,>1/2. The presence of boundary

layers in the different phases of the, B) plane is conserved upon A. Position and amplitude of the domain wall
variation of the binding constari. The filled black circle repre- on the (@, B) plane

sents the critical poin€C where the domain wall exhibits critical ) )

behavior; see Sec. V B. This critical point exits the plane for large Figure 20 shows the dependence of the domain wall po-
values ofK, accompanied with a topological change of the phaseSition, X,, and heightA,,, on the entry rater along lines of
diagram.

XW
1-p. In the same limit, the average density in the bulk 0.8 @),
reaches asymptotically the valyg,,=p, of the Langmuir 0.6
isotherm. 04
Eventually, one observes that all phase boundaries be-
tween the LD-HD coexistence and the HD phase, i.e., where 0.2
the domain is pinned at,=0, intersect at the same poiff 0
for any value of the detachment rdfg,. This nodal point A/ Ayl (b)
can be evaluated as=p=1-p=1/(K+1). At this point, Beo2
indeed, the average densityis given by the flat profile of 06122
the Langmuir isothernp=K/(K+1) which is obviously in- 04  B-os
dependent of)p. As a result, the domain wall does not move 02} p-os
from x,=0 for any value of the detachment rdg,. Inter- N
estingly, one remarks that both poin® and A/ approach 0 %01 02 03 04 05
continuously theriple point of the TASEPx=8=1/2 in the o

f Fni + +
simultaneous limiflp — 0" andK — 17 FIG. 20. Domain wall positiorx, (a) and heightd,, (b) as a

function of the entrance for different values of the exit ratg at
V. DOMAIN WALL PROPERTIES 0p=0.1 andK=3. At the critical pointa=«a, and=1/2 a domain
wall forms at the right end of the system with an infinitesimal
The knowledge of the analytic solution in the mean-fieldheight A,. The value of the “critical” entry rate isa;
approximation allows for a detailed study of the behavior 0f=0.038 532... and can be written explicitly by using the analytic
the domain wall height and position upon a change of thesolution in the mean-field approximation, see EZp).
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X
0.8}

0.8}
0.6}
0.4} ~ 06}

% =0.347303...

0.2 04l K=1.1
0

0.2}
Aup 00=0.038532...
0 6 0 1 1 K=3 1 1

T 0 0.2 04 0.6 0.8 1
0.41 X
02 FIG. 22. Average density profiles computed analytically in the
0 \ inviscid limit expr in terms of Lam function h
0T 0705 o5 scid t expressed in terms of LambeW function (dashed

B lines) and numerically fore =102 within a mean-field approxima-
tion (solid smooth ling Parameters are=«. [see Eq(25) for the
FIG. 21. Domain wall positiorx, (a) and heighta,, (b) as a  @nalytic expressidn3=0.5,05=0.1 and different values d&. The
function of the exit rates for different values of the entrance rate ~ Profile is entirely given by the left solutiop, for the value of the
at0p=0.1 andk=3. Fora=a, and@=1/2 a domain walforms at ~ €ntry ratea, defined by the conditiop,(x=1)=1/2, andg=1/2.
the right end of the system with an infinitesimal height For exit ~ Note that in this casep, matches simultaneously the left and the
rates@>1/2, both domain wall positior, and heightA,, become  fight boundary conditions.
independent of3. Changes in the exit rate only affect the size and
shape of the boundary layer on the right end, but not the bulphasg. Only the magnitude of the boundary layer changes
density profile. with increasingg.

constant exit ratg8. As can be inferred from the structure of B. Critical properties of the domain wall
the phase diagram presented in the preceding section, for a In this section, we discuss the domain wall properties
small enough exit rat@, a domain wall can form in the bulk close to the special poir€ where the domain wall forms
with a finite amplitude even for a vanishing entry rate, with infinitesimal height. The analysis will make use of the
=0. For largerg, one observes that the domain wall builds analytic solution in the mean-field approximation. We show
up with a finite height on the right boundary only above that the domain wall emerges as a consequence of a bifurca-
some specific value of. If one regards the domain wall tion phenomenon and calculate the resulting nonanalytic be-
height as a kind of order parameter for the coexistence phaskavior of its height and position.
such a behavior can be termed a first order transition. This At the point C, the analytic solution of the mean-field
has to be contrasted with the cg8=0.5, where the domain equations is described by a low density profile)=p,(x)
wall enters the system aj,=1 with infinitesimal height at a  that not only matches the boundary conditions at the left but
critical entry ratea=a. In the same terminology this would also the one at the right end; see Fig. 22. This implies that
then be a second order transition. Indeed, as we are going tRe left and right currents also match at the right end of the
discuss in the next section, the domain wall exhibits criticalsystem. Interestingly, at this position the currpig maximal
properties at this point. In the phase diagrdfig. 18a)] the  [64]. By a small change of the system parameters in the
corresponding critical point is indicated &s two-phase LD-HD coexistence region the domain wall forms
In all cases, upon increasing and hence the influx of at the right end characterized by a small height, provided that
particles, the domain wall changes its position continuouslyz<1/2.
from the right to the left end of the system. Then, at some Using the analytic solutioi23a and(23b) one can give
value @ which depends orB, the domain wall leaves the an explicit expression of the critical poiit as a function of

system with a finite amplituda,,. Op andK. The condition that the left boundary matches the
Similar behaviors of the position and height of the domainyalue 1/2 atx=1 translates tar,(x=1)=-1 or, using the

wall are found as a function g8 for fixed values ofe; see  properties of the LambemV function, as

Fig. 21. Here one finds that, upon increasifigand hence L

reducing the out-flux of particles, the domain wall position Yo(x=1) =1/e. (24)
Xy moves continuously from the left to the right boundary. From the expression of the function,, Eq. (21), and the

For smalla, a domain wall is formed at a finite positio§,  jnjtial condition o(0)=(2a-1)(K+1)/(K-1)-1, one com-
and B=0. For larger entry rates, the domain wall forms atputes the value of theritical entry rate

Xw=0 with a finite amplitude only for finite values of the exit 5

rate 8. As before, the amplitude of the domain wal,van-  _ K K-1 (_ Q (K+1)° 1 )
ishes only for the critical valuer=a, at S=1/2. Indeed, CT(K+1) 2K+1) * P(K-1) '
when a¢>a, and B>1/2, one notes that the domain wall (25)

positionx,, remains constant upon changigAs we have
explained above, this corresponds to the situation where therom the discussion of the phase diagram and the general
bulk profile is unaffected by a change in the exit réi@  properties of the domain wall, one already infers that
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0 0 et FIG. 23. Double decimal logarithmic plots of
A / Ay _ .~ ;‘*ﬁ the critical behavior of the domain wall height,
-2 "3 .- _‘;—‘,V.Vw“"x -4 23 .-l T A, and position from the right end side, %z
e f.*""' Lo Xﬁf We obtained the plot numerically with the pro-
ad et Prst 1-Xw -8 - Xw gramMAPLE, release 7, using the analytic mean-
5 o 0 field solution in the vicinity of the critical poin®
- ”*' 5/3 42 ijff"4/3 and applying the matching condition over the left
-8 e and right currentsj ,(x,) =] g(X,). (& As a func-
-2 10 -8 6 4 -2 0 -0 8 6 4 -2 0 tion of « starting from the poin€ on the critical
(@ log,o( x=0.- oic) (b) log o x=1/2-B) manifold with coordinatesa;=0.038 532...,8
=1/2,0p=0.1, andK=3. (b) As a function of3
starting from the poinC on the critical manifold
0 0 with coordinatesa=0.038 532...,8,=1/2, Qp
Aw / ) Ay s =0.1, andK=3. (c) As a function ofK from the
2 13,2 — 2 13 oo e ”“ ’ point C on the critical manifold with coordinates
e 4( - Ty @=0.2,8=1/2,05=0.051 443. .., an.=3. (d)
P w 41" As a function of Q)p from the pointC on the
-4 / o critical manifold with coordinatesa=0.2, B
PR &l o =1/2, 0p =0.051 443..., ank=3. The value
il of (p ¢ can be easily obtained from E@®1) and
-7 6 5 -4 -3 -2-10 -10 8 6 -4 -2 0 the initial conditiona(0). Note the different scal-
(©) 10910 X=K - K¢) (d log,,( x=QpQp ) ing regime for the exit ratg.
0<a<1/2 for not too large values d2p andK. ag Y 5(Xy)
X - = . 2
The set .- pog=0,) _‘B_Ya(xw) (29
(a=a(K,Qp), =112 K,Qp) (26) The important observation is that the right-hand side is inde-

) _ _ ) ) pendent of the domain wall positio,; see Eq.(21). Ex-
defines a two-dimensional smooth manifold in parametepanding Eq(29) to leading order, one obtains

space(critical manifold). . )
In order to study the critical properties close to this mani- (A0)* ~ 80 =A,ba+ Ag(dP)" + AcdK + Ag8Qp, (30)
fold we apply standard methods of bifurcation theoryWhere50 is a distance along a generic path that ends on the

[65-67. We consider a sm(_)pth path n the region Of param-cisica| manifold. We do not consider the nongeneric case
eter space close to the critical manifold defined above. A

some pointC this path will cross the critical manifold. The fvhere the critical manifold is approached tangentially. Then

”» . . .one finds power laws different from those presented below
small quantities that describe the behavior of the domalqor the generic case

wall close to the critical manifold are the distance from the As before, the coefficients can be computed explicitly

right eng Side@(_cri 1 =X, anf_lt_the d_lcl)rgain wall heiﬂm‘l” 4.and shown to depend only on the rates at the critical int
=Pp(%w) ~pa(Xy). These quantities will be expressed to lead- o otingly, the distancéO does not exhibit a linear term
ing order in terms of the small deviations from the critical ;, 8B. This is due to the singular behavior of the density
point da=a-ag, op=p-1/2, andsimilarly for 82p anddK.  prafile 4 (x) close to the right boundary at the critical point

The matching condition of the left and right currents, o. soq Fig 22 Combining the two expansions, one finds the
pa(Xw) +pg(X,) =1, can be rewritten in terms of reduced den'following power laws:

sities o as a,(Xy) + o5(X,) =—2. As a consequence, the solu-
tion close to the critical point writes as, g(x,)=-1% A, X~ 60?3, A, ~ 503, (31)
where we have introduced the reduced domain wall heig
Ao as another small quantity. The relation betwe®nand
Ao can be obtained by expanding the equality

h‘Y‘he validity of these exponents is confirmed numerically in
Fig. 23. We also checked that the amplitudes in the expan-
sions (31) coincide with those obtained by the numerical

0eXPTp) =~ V(). (2p da@

leading to C. Further properties of the domain wall position

X~ (Ao)?, (28) In this section we discuss how the position of the domain
wall x,, moves upon changin@p for fixed « andK>1 and
where the prefactor can be explicitly computed and dependa set of different values forB. In the first quadrant,
only on the value of the system parameters at the criticak, 3<<1/2, and for very small values &1, the coexistence
point C. A second relation connectinfyo to the small dis- phase is confined to a narrow strip parallel to the diagonal
tancesda, 88, 5K, and 8y arises from the definition of the «=p8; see Fig. 1@m). It extends to the quadrant
LambertW-function |o|exp(o) =Y by taking the ratio a<1/2,8>1/2, where boundary layers form. On the other

046101-17



PARMEGGIANI, FRANOSCH, AND FREY

[0.20001 ¢ 2001

T

PHYSICAL REVIEW E0, 046101(2004

(32) one finds that in the limikw=8—1/2", the positionx,
is a singular function of the binding constant close Ko
=1%

The previous discussion corroborates the fact that the

10 .296'5'6 - T T T Langmuir kinetics constitutes a singular perturbation of the
2 | TASEP even in the limit of small rates, yielding additional
X 1072t e features that are generated by the competition between the

[ 0.19999 two dynamics.
107 .
? VI. CONCLUSIONS
4
10°F L ﬁ . K We have presented a detailed study of a model for driven

one-dimensional transport introduced recently in R&7],
Qp where the dynamics of the totally asymmetric simple exclu-
sion process has been supplemented by Langmuir kinetics.

FIG. 24. Domain wall positiom,, in logarithmic scale as a func-  This nonconservative process introduces competition be-
tion of Op at @=0.2,0p=0.051 443... an& =3 and different val-  tween boundary and bulk dynamics. The model is inspired
ues of3. If 5>« the domain wall builds up from the right bound- p, assential properties of intracellular transport on cytoskel-
ary, while for < a from the left boundary. For=p the domain i1 filaments driven by processive motor protej@s,6g.
wall approaches the positiox, which is independent of the de- These molecular engines move unidirectionally along cy-
creasing detachment rath,. At large(}p, the domain wall position toskeletal filaments and simultaneously are subject to
Xy always moves to the left boundary sty binding/unbinding kinetics between the filament and the cy-

toplasm. The processivity of the motors implies low rates of
hand, for very largé), the coexistence phase corresponds tojetachment. Attachment rates can be easily tuned by chang-
the regiona <1-p,, see Sec. IV B 2. The interesting featuresng the concentration of motors in the cytoplasm. In particu-
therefore arise in the region af<1-p and B<1/2. We |31 one may obtain very low attachment rates using a low
consider a path in the phase diagram with fixeg, andK  yglume concentration of motors.
and follow how it intersects the phase boundaries of the The nonconservative dynamics proposed introduces a
2-phase coexistence region LD-HD@s is increased. From  nontrivial stationary state, with features qualitatively differ-
Fig. 24 one can distinguish three cases. ent from both the totally asymmetric simple exclusion pro-

For a< g the system is in a LD phase for very sm&@lh.  cess and Langmuir kinetics. The competing dynamics leads
Then, at a critical value of)p, it enters the LD-HD region g an unexpected spatial modulation of the average density
where a domain wall forms at the right boundary. A further profile in the bulk. For extended regions in parameter space,
increase of()p, results in a change of the domain wall posi- we find that the density profile exhibits discontinuities on the
tion to the left, asymptotically reaching the left boundary forscale of the system size which is characteristic for phase
very large values of the detachment rélg. separation. Furthermore, the coexisting phases manifest

For B<a, the system is in the HD region for smdlp.  themselves by a domain wall that, contrary to the TASEP, is
By increasing the detachment rate, it enters the LD-HD reigcalized in the bulk. In contrast to previous modg26,27,
gion. Differently from the previous case, the domain wallthe |ocalization is not induced by local defects, but arises via
now forms at the left boundary, it moves to the right up to a5 collective phenomenon based on a microscopically homo-
maximal positionxy, for intermediate values dof)p, and fi-  geneous bulk dynamics. The resulting phase diagram is to-
nally for large{)p it moves back to the left boundary with pojogically distinct from the totally asymmetric exclusion
the same asymptotic behavior as the previous case. process and exhibits additional phases.

For B=a, the system remains in the two-phase coexist- an analytic solution for the density profile has been de-
ence region LD-HD for all values of the detachment @t¢  rjyed in the context of a mean-field approximation in the
One can prove, using the analytic soluti@8a and(23b),  continuum limit. The properties of the average density for
that the domain wall position stays finite even in the limit gifferent kinetic rates are encoded in the peculiar features of
Qp—0" and is given by the LambertW function. In particular, the discovery of a

branching point is a prerequisite to rationalizing the behavior
(32) of the solution. The analytic solution has allowed us to trace

and study in detail the properties of the phase diagram. We

found that the cases of equal and different binding rates give
wherea(0) ando(1) are the usual boundary conditions writ- rise to rather distinct topologies in the phase diagram. The
ten in terms of the model parameters; see @4). Interest-  limiting cases for small or large kinetic rates have been com-
ingly, the domain wall positiorx, obtained fora=g and puted analytically. We have identified special points of the
vanishing )p does not reduce to the value given by thephase diagram which are the analog of the “triple po{wmiZ.
mean-field continuum approximation in a pure TASEP, i.e.where all three phase boundaries mestthe totally asym-
Xw=1/2. Inorder to regain the TASEP position, the binding metric simple exclusion process. There, a domain wall builds
constantkK has to approach the unity. Moreover, from Eqg. up with infinitesimal height at the boundary, exhibiting criti-

_ o([1+0(0)]
" 2[o(0)o(1) - 1]°
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cal features characterized by unusual mean-field exponents. 10°
Finally, we have discussed some limiting cases in which the
properties of the totally asymmetric simple exclusion process
in the mean-field approximation are recovered.

Let us give some more intuitive arguments on the domain
wall formation and localization. In the limit of large system
sizes, the corresponding time-dependent version of(EL.
which governs the dynamics of the “coarse-grained” density N
p reads 10° 10" 10°

dp+(1-2p)dp=Fp— Fp. (33

simulation +
fitn=0.51.__

) ) FIG. 25. Domain wall slopes, estimated from Monte Carlo
One can easily see that on hydrodynamic scales the sourggnylations as a function of the system she Simulations were
contribution on the right-hand side is negligible compared toerformed fore=0.2, 4=0.6,K=3, andQp=0.1.
the terms related to the transport dynamics. On these scales,
the local dynamics is essentially described by mass conse
vation just as in the totally asymmetric exclusion process
Neglecting the source contribution, one can give an implici

fent is space dependent and drives the domain wall to an
tt;quilibrium position corresponding to a cusp in the current
) ) : rofile. Such domain wall behavior can be rephrased in terms
analytic solution of Eq(33) by standard methods of partial of a random walk in the presence of a confining potential

differential equationd52,53. From such an analysis, one P
can infer the mechanism of the formation of density discon-[7l]' This picture also suggests that the exponent for the

L . ._slope of the domain wall is exactly given by=1/2.
tinuities su_ch as.sh.oc.ks on the h.ydrodyljamm scale, Wh'Cﬁ It would be interesting to study how the case of equal
usually build up in finite time. An interesting feature of the

d . Iis also its sl 69 functi £ th rates can be obtained by a limiting procedure of the case with
orrt1a|n V'VaeN ISI an_o '2555 Opaﬁ [ t]has Ia uncfltohn % € slightly different rates. The change of topology in the phase

\?vyeileans] zlétaiﬁer:j f;gi*n Mgvr?tes C?;\rllo silit?lgzo% foregrgr\?vﬁ:g diagrams should be contained in the analytic solution, how-

system sizeN. We find the scaling laws,~N” with the ever, one suspects from E@1) that an essential singularity

N . : . ... appears. Furthermore, one would like to see if possible vari-
exponentn—O.SOi0.0s;Th|s result is fully compatible with ants of our model introduce additional features similar to
the scaling exponeny=1/2 computed for a pure totally

mmetric exclusion proc Note that the mean-field what has been done for a reference dynamics, i.e., the totally
asymmetric exclusion process. Note that the mean-tie apasymmetric exclusion proce§l].
proximation provides a wrong exponentea=1. The soft-
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