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We discuss a class of driven lattice gas obtained by coupling the one-dimensional totally asymmetric simple
exclusion process to Langmuir kinetics. In the limit where these dynamics are competing, the resulting non-
conserved flow of particles on the lattice leads to stationary regimes for large but finite systems. We observe
unexpected properties such as localized boundaries(domain walls) that separate coexisting regions of low and
high density of particles(phase coexistence). A rich phase diagram, with high and low density phases, two and
three phase coexistence regions, and a boundary independent “Meissner” phase is found. We rationalize the
average density and current profiles obtained from simulations within a mean-field approach in the continuum
limit. The ensuing analytic solution is expressed in terms of LambertW functions. It allows one to fully
describe the phase diagram and extract unusual mean-field exponents that characterize critical properties of the
domain wall. Based on the same approach, we provide an explanation of the localization phenomenon. Finally,
we elucidate phenomena that go beyond mean-field such as the scaling properties of the domain wall.
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I. INTRODUCTION

Many natural phenomena driven by some external field or
containing self-propelled particles evolve into stationary
states carrying a steady current. Such states are characterized
by a constant gain or loss of energy, which distinguishes
them from thermal equilibria. Examples range from biologi-
cal systems like ribosomes moving alongm-RNA or motor
molecules “walking” along molecular tracks to ions diffusing
along narrow channels, or even cars proceeding on high-
ways. In order to elucidate the nature of such nonequilibrium
steady states a variety of driven lattice gas models have been
introduced and studied extensively[1]. Here we focus on
one-dimensional(1D) models, where particles preferentially
move in one direction. In this context, the totally asymmetric
simple exclusion process(TASEP) has become one of the
paradigms of nonequilibrium physics(for a review see Refs.
[2–5]). In this model a single species of particles is hopping
unidirectionally and with a uniform rate along a 1D lattice.
The only interaction between the particles is hard-core repul-
sion, which prevents more than one particle from occupying
the same site on the lattice; see Fig. 1.

It has been found that the nature of the nonequilibrium
steady state of the TASEP depends sensitively on the bound-
ary conditions. For periodic boundary conditions the system
reaches a steady state of constant density. Interestingly, den-
sity fluctuations are found to spread faster than in a diffusive
behavior[6]. This can be understood by an exact mapping
[7] to a growing interface model, whose dynamics in the
continuum limit is described in terms of the Kardar-Parisi-

Zhang(KPZ) equation[8] and its cousin, the noisy Burgers
equation[9]. In contrast to such ring systems, open systems
with particle reservoirs at the ends exhibit phase transitions
upon varying the boundary conditions[10]. This is genuinely
different from thermal equilibrium systems where boundary
effects usually do not affect the bulk behavior and become
negligible if the system is large enough. In addition, general
theorems do not even allow equilibrium phase transitions in
one-dimensional systems at finite temperatures(if the inter-
actions are not too long-range) [11].

Yet another difference between equilibrium and nonequi-
librium processes can be clearly seen on the level of its dy-
namics. If transition rates between microscopic configura-
tions are obeying detailed balance the system is guaranteed
to evolve into thermal equilibrium[12]. Systems lacking de-
tailed balance may still reach a steady state, but at present
there are no universal concepts like the Boltzmann-Gibbs
ensemble theory for characterizing such nonequilibrium
steady states. In most instances one has to resort to solving
nothing less than its full dynamics. It is only recently that
exact(nonlocal) free energy functionals for driven diffusive
systems have been derived[14,15].

This has to be contrasted with dynamic processes such as
the adsorption-desorption kinetics of particles on a lattice
coupled to a bulk reservoir[Langmuir kinetics,(LK )]; see
Fig. 2. Here, particles adsorb at an empty site or desorb from
an occupied one. Microscopic reversibility demands that the
corresponding kinetic rates obey detailed balance such that
the system evolves into an equilibrium steady state, which is
well described within standard concepts of equilibrium sta-
tistical mechanics. If interactions between the particles other
than the hard-core repulsion are neglected, the equilibrium
density is solely determined by the ratio of the two kinetic
rates[16], as given by the Gibbs ensemble.

The TASEP and LK can be considered as two of the sim-
plest paradigms which contrast equilibrium and nonequilib-
rium dynamics and stationary states. Langmuir kinetics
evolves into a steady state well described in terms of stan-
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dard concepts of equilibrium statistical mechanics. Driven
lattice gases such as the TASEP evolve into a stationary non-
equilibrium state carrying a finite conserved current.
Whereas such nonequilibrium steady states are quite sensi-
tive to changes in the boundary conditions, equilibrium
steady states are very robust to such changes and dominated
by the bulk dynamics. In the TASEP the number of particles
is conserved in the bulk of the one-dimensional lattice. It is
only through the particle reservoirs at the system boundaries
that particles can enter or leave the system. In LK the particle
number is not conserved in the bulk. Particles can enter or
leave the system at any site. Depending on whether we con-
sider a canonical or grand canonical ensemble, the lattice is
connected to a finite or infinite particle reservoir. Unlike the
steady state of the TASEP, the equilibrium steady state of LK
does not have any spatial correlations.

Combining both of these processes may at first sight seem
a trivial exercise since one might expect bulk effects to be
predominant in the thermodynamic limit. This is indeed the
case for attachment and detachment rates,vA andvD, which
are independent of system sizeN. For large but finite systems
interesting effects can only be expected if the kinetics from
the TASEP and LK compete. Then, as we have shown re-
cently [17], novel behavior different from both LK and the
TASEP appears. In particular, one observesphase separation
into a high and low density domain for an extended region in
parameter space.

When should one expect competition between bulk dy-
namics(LK ) and boundary induced nonequilibrium effects
(TASEP)? Let us consider the following heuristic argument.
A given particle will typically spend a timet,1/vD on the
lattice before detaching. During this “residence” time the
number of sitesn explored by the particle is of the order of
n,t. Hence, for fixedvD, the fractionn/N,1/svDNd of
sites visited by a particle during its walk on the lattice would
go to zero asN→`. Only if we introduce a “total” detach-
ment rate byVD=NvD and keep it constant instead ofvD as
N→` will the particle travel a finite fraction of the total
lattice size. Similar arguments show that a vacancy visits an
extensive number of sites until it is filled by attachment of a
particle if vA scales to zero asvA=VA/N with a fixed “total”
attachment rateVA. In other words, competition will be ex-
pected only if the particles live long enough such that their
internal dynamics or the external driving force transports

them a finite fraction along the lattice before detaching.
Then, particles spend enough time on the lattice to “feel”
their mutual interaction and, eventually, produce collective
effects. In summary, competition between bulk and boundary
dynamics in large systemssN@1d is expected if the kinetic
ratesvA andvD decrease with increasing system sizeN such
that thetotal ratesVA andVD with

VA = vAN, VD = vDN s1d

are kept constant withN.
The competition between boundary and bulk dynamics is

a physical process that has, to our knowledge, not yet been
studied in the context of driven diffusive systems. In previ-
ous models emphasis was put on the analysis of boundary
induced phenomena in driven gases of mono- or multi-
species of particles[4,5,18–21], in the presence of interac-
tions (see, e.g., Refs.[22,23]), disorder[24,25] or local in-
homogeneities[26,27], particles with sizes larger than the
lattice spacing[28,29], lattices with different geometries
(e.g., multilanes lattice gases[30]), or systems in the pres-
ence of several conservation laws(for a review see, e.g., Ref.
[21]).

In this paper we explore the consequences of particle ex-
change with a reservoir along the track(LK ) on the station-
ary density and current profiles and the ensuing phase dia-
gram of the TASEP. A short account of our ideas has been
given recently[17], where we have introduced the model and
have shown how our Monte Carlo results can be rationalized
on the basis of a mean-field theory, which we also solved
analytically. The purpose of the present paper is to give a
complete and comprehensive discussion of the topic. We will
present results from Monte Carlo results for the full param-
eter range of the model including the particular case where
on and off rates equal each other, which were left out in our
short contribution[17] due to the lack of space. In addition,
we will give the full reasoning for the derivation and analyti-
cal solutions of our mean-field theory. Here, additional in-
sight is gained by identifying a branching point that explains
all the features of the density profiles and phase diagram
analytically. In particular, we show that a new critical point
organizes the topology of the diagram and leads to unex-
pected phenomena already briefly discussed in Ref.[17]. In
recent work, Evanset al. [31] and Popkovet al. [32] have

FIG. 1. Illustration of the totally asymmetric
simple exclusion process with open boundaries.
The entrance and exit rates at the left and right
end of the one-dimensional lattice are given bya
andb, respectively.

FIG. 2. Illustration of Langmuir kinetics.vA

and vD denote the local attachment and detach-
ment rates.
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rephrased the mean-field analysis first given in Ref.[17] and
reproduced some of our results. The mean-field equations
are, however, left in their implicit form and thus miss the
interesting features we will obtain from the identification of a
branching point.

These effects differ from those known in reference models
of equilibrium and nonequilibrium statistical mechanics such
as LK and the TASEP. Indeed, the coupling between the
TASEP and LK, as introduced above, produces new phenom-
ena and extends the interest toward systems which break
conservation laws in a nontrivial way. As we shall see in the
next section, these features emerge already at a level of prop-
erties of the microscopic dynamics in configuration space
described by the master equation.

Recently a variant of our model has been suggested by
Popkovet al. [32]. Upon supplementing the Katz-Lebowitz-
Spohn model by Langmuir kinetics and analyzing it within
the mean-field approach similar to[17], an even richer sce-
nario for the stationary density profile is obtained that in-
cludes the emergence of localized downward domain walls
and the appearance of several “shocks” separating three dis-
tinct phases. It is also noted in Ref.[32] that in general it
may be important to replace the mean-field current by the
exact current in the stationary state.

In addition to its fundamental importance for nonequilib-
rium physics in general, competition between bulk dynamics
and boundary effects are ubiquitous in nature, in particular
biological phenomena. The TASEP has actually been intro-
duced in the biophysical literature as a model mimicking the
dynamics of ribosomes moving along a messenger RNA
chain[33]; for generalizations of these studies, see the recent
work in Refs. [29,34]. Also some aspects of intracellular
transport show close resemblance to our model. For ex-
ample, processive molecular motors advance along cytoskel-
etal filaments while attachment and detachment of motors
between the cytoplasm and the filament occur[35]. Typically
kinetic rates are such that these motors walk a finite fraction
along the molecular track before detaching. This falls well
into the regime where we expect stationary states whose
properties differ from the known phenomenology of TASEP
and LK. Recently, it has been shown that such dynamics can
be relevant for modeling the filopod growth in eukaryotic
cells produced by motor proteins interacting within actin
filaments[36]. Finally, our model could also be relevant for
studies of surface adsorption and growth in the presence of
biased diffusion or for traffic models with bulk on-off ramps
[37].

Since our paper contains a rather comprehensive discus-
sion of the topic, we will give a detailed outline to provide
the reader with some guidance through the analysis. In Sec.
II we define the model by its dynamic rules and make a
connection to its stochastic dynamics on a network. Though
the relation between stochastic dynamics and networks is
interesting to fully understand the peculiar features of the
model introduced by the combination of conserved dynamics
and on/off kinetics, it may be skipped for the first reading.
We then present the problem in terms of a Fock space for-
mulation and discuss the symmetries of the model, both key
features for the subsequent formulation of the mean-field
theory. In Sec. III we briefly discuss some technical details of

the Monte Carlo simulation. Then follows a key section of
the paper, a detailed development of the mean-field approxi-
mation and the resulting “Burgers”-like equations in the con-
tinuum limit. Here we also discuss a series of features of
these equations which will turn out to be crucial for the un-
derstanding of the ensuing density and current profiles.

In Sec. IV an analytic solution of the continuum equations
is derived and compared to simulation results. We start the
discussion for the special case that on and off rates are iden-
tical. Though simpler to analyze, this case is somewhat arti-
ficial as it requires a fine-tuning of the on and off rates.
Generically, one expects on and off rates to differ. Then the
mathematical analysis becomes significantly more complex.
We are still able to give an explicit analytical solution in
terms of so-called Lambert functions, which allows us to
identify a branching point that explains all the features of the
density profiles and phase diagram analytically. In particular,
we find a special point that organizes the topology of the
diagram. In Sec. V we discuss the properties of the domain
wall characterizing the phase coexistence upon changes of
the model parameters. In particular, we show that in the vi-
cinity of the special point mentioned above the domain wall
exhibits nonanalytic behavior similar to a critical point in
continuous phase transitions. We derive the critical expo-
nents and the scaling related to the amplitude and position of
the domain wall. A conclusion, Sec. VI, summarizes our re-
sults and provides additional arguments on the phenomenon
of phase coexistence. Last, we discuss some discrepancies
between the mean-field approach and the simulation results
and discuss a possible reconciliation.

II. THE MODEL

In this section we are going to describe the model in some
detail. We will also put it into the context of network theo-
ries. This will help us to pinpoint the differences between the
TASEP and LK dynamics and show how a model combining
both aspects will lead to emergent properties. Finally, we
briefly review the key ideas of the Fock space formulation of
stochastic particle dynamics. In later sections this formula-
tion will be used for an analytic discussion of the model.

A. Definition of the dynamic rules

In the microscopic model we consider a finite one-
dimensional lattice with sites labeledi =1, . . . ,N (see Fig. 3)
and lattice spacinga=L /N, whereL is the total length of the
lattice. The sitei =1 si =Nd defines the left(right) boundary,
while the collectioni =2, . . . ,N−1 is referred to as the bulk.

The microscopic state of the system is characterized by a
distribution of identical particles on the lattice, i.e., by con-
figurationsC=hni=1,. . .,Nj, where each of the occupation num-
bersni is equal to either zero(vacancy) or one(particle). We
impose a hard core repulsion between the particles, which
implies that a double or higher occupancy of sites is forbid-
den in the model. The full state space then consists of 2N

configurations.
The statistical properties of the model are given in terms

of the probabilitiesPsC ,td to find a particular configuration
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C=hnij at time t. We consider the evolution of the probabili-
ties P described by a master equation:

dPsC,td
dt

= o
C8ÞC

fWC8→CPsC8,td − WC→C8PsC,tdg. s2d

Here,WC→C8 is a non-negative transition rate from configu-
rationC to C8. As usual, master equations conserve probabili-
ties. The microscopic processes connecting two subsequent
configurations are local in configuration space. Out of the
possible 2N32N transitions, we consider only the following
elementary steps connecting neighboring configurations:

(a) at the sitei =2, . . . ,N−1 a particle can jump to sitei
+1 if unoccupied with unit rate;

(b) at the sitei =1 a particle can enter the lattice with rate
a if unoccupied; and

(c) at the sitei =N a particle can leave the lattice with rate
b if occupied.
Additionally, in the bulk we assume that a particle

(d) can leave the lattice with site-independent detachment
ratevD; and

(e) can fill the site(if empty) with a ratevA by attach-
ment.

Processessad–scd constitute a totally asymmetric simple
exclusion process with open boundaries[3–5], while pro-
cesses(d) and (e) define a Langmuir kinetics[16]. We have
taken the attachment and detachment rates to be independent
of the particle concentration in the reservoir, i.e., we have
assumed that the Langmuir kinetics on the lattice is reaction
and not diffusion limited. The effect of diffusion in confined
geometry has been studied in Ref.[38]. A schematic graphic
representation of the resulting totally asymmetric exclusion
model with Langmuir kinetics[17] is given in Fig. 3.

Once we know the dynamic rules of the stochastic pro-
cess, one may introduce the notion of neighboring configu-
rations forC andC8, if they differ only by a small fraction
fOs1/Ndg of the corresponding occupation numbers. This
naturally leads us to a reinterpretation of the dynamics in
terms of networks as described in the following section.

B. Stochastic dynamics and networks

The Markovian dynamics of the system can be repre-
sented in terms of a network(graph), where the configura-
tions of the stochastic process correspond to the nodes(ver-
tices) of the network. Each transition allowed by the
dynamics is represented as a directed link(edge) and

weighted by the corresponding transition rate which can be
read off from the dynamic rulessad−sed. Due to the local
dynamics the network is very dilute. A given node in the
network is connected to a maximum numberOsNd of nearby
configurations. Nevertheless, any configuration can still be
reached from any point within the network. In other words
the network is connected and does not break into disjunct
pieces. In addition, every node has at least one ingoing and
one outgoing link. This guarantees that the system is ergodic,
at least as long asN is finite, and all states are recurrent[39].

On such a network a distance between two different con-
figurations can be defined as the minimal number of steps
required to connect them. Note that the “architecture” of the
network corresponding to a pure TASEP is very different
from a pure LK; see Fig. 4 for an illustration.

The TASEP network is characterized by large fluctuations
in the connectivity. Take for example the completely filled
configuration. This state can only be left if the particle at the
right end of the lattice is ejected from the system. Similarly,
a configuration described by a step functionni =Qsxi −x0d
with a completely filled lattice to the left and a completely
empty lattice to the right ofx0 can only be left by a single
process where the rightmost particle is hopping forward. We
call such and similar states “periphery states” since they are
linked to the rest of the network by a single or only a few
outgoing and ingoing links. This is to be contrasted with
“typical states” for a given density, where particles are more
or less randomly distributed over the lattice. Then, the con-
ditional probability that an empty site is in front of a filled
site will be finite. In other words, there will be an extensive
number of pairss1,0d on the lattice. This implies that a typi-
cal state will be connected with an extensive numberOsNd of
directed ingoing and outgoing links to other nodes in the
network. Similarly, the shortest path connecting two non-
neighboring configurations has a broad length distribution.
Given two randomly chosen sequences of occupation num-
bersni =0 andni =1 (i.e., nodes) one has to ask, how many
local moves of the type(a) to (c) (i.e., links) are needed to
transform one sequence into the other. In general, there will
be a distribution of paths connecting these nodes. The short-
est connection may be only a few links if local rearrange-
ments of particles are sufficient for matching the microscopic
configurations. It seems plausible that this is the case for
such microscopic configurations, whose coarse-grained den-
sity profiles are identical or at least very similar. If the spatial
profiles of the coarse-grained densities corresponding to the
two configurations differ significantly, one expectsOsN2d lo-

FIG. 3. Schematic drawing of the totally asymmetric simple exclusion process with bulk attachment and detachment[17]. The entrance
and exit rates at the left and right end of the one-dimensional lattice are given bya and b, respectively;vA and vD denote the local
attachment and detachment rates.
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cal rearrangements to be necessary for matching the micro-
scopic configurations. This is simply a consequence of par-
ticle conservation in the bulk. For example, to completely
empty a totally filled state obviously requiresOsN2d steps. In
addition, distances between two configurations in a TASEP
network can also be highly asymmetric. Consider a configu-
rationC corresponding to a node at the periphery of the net-
work connected to a configurationC8. Then the correspond-
ing reverse step does not exist, and in order to return to
configurationC one has to make a large loop in configuration
space. In summary, a network corresponding to TASEP con-
tains only directed links. A characteristic feature is its het-
erogeneity in the connectivity of nodes and distances be-
tween nodes. The network contains loops, many of which
may be very long due to the conservation law in the bulk.

This has to be contrasted with the architecture of a net-
work corresponding to LK. Here, the connectivity of all
nodes is independent of the particular configuration. Since
each occupation numberni at a given sitei can be indepen-
dently changed, the number of links outgoing from a node is
simply N. For each outgoing link there is an ingoing link
with weights related by detailed balance. Moreover, any two
configurations can be reached by at mostN transitions. Since
there is no conservation law, only local moves(particle at-
tachment or detachment) are necessary. The distance of two
configurations(along the shortest path) in a LK network is
dsC ,C8d=oi=2

N−1uni −ni8u [40]. Since the order of the necessary
attachment and detachment processes is irrelevant, the num-
ber of such shortest paths is highly degenerate and depends
only on the distance asd!. In summary, the LK network is
not directed, very homogeneous, highly connected, and con-
tains many loops of all sizes.

An important distinction between LK and the TASEP can
be clearly seen if one compares the nature of the correspond-
ing stationary states. Langmuir kinetics has a solution de-
scribed in terms of the thermodynamic equilibrium distribu-
tion:

PsCd =
KuCu

sK + 1dN−2 . s3d

HereuCu;oi=2
N−1 ni is the number of occupied sites in the bulk

andK=vA/vD is thebinding constant. Note that the equilib-
rium distribution of LK can be characterized by a Boltzmann
weight upon introducing an effective HamiltonianH=
−kBToi=2

N−1 ni ln K. The caseK=1 has an interesting topologi-
cal interpretation since the links in the LK network lose their
directionality and the effective HamiltonianH evaluates to
0.

In contrast, the totally asymmetric exclusion process does
not satisfy the detailed balance condition

WC8→CPsC8d = WC→C8PsCd,

and evolves into a nonequilibrium steady state. Actually, if
one would assume detailed balance along a closed directed
loop in the TASEP network, one would be led to the conclu-
sion that all probabilities along the path have to be zero.
This, in turn, would contradict the ergodicity of the finite
system.

The network analogy discussed above can now be used to
understand why a stochastic dynamics combining the totally
asymmetric exclusion process and Langmuir kinetics is in-
teresting and shows a range of features not contained in the
TASEP or LK alone. We have seen that the number of links
necessary to connect two non-neighboring states in the
TASEPfOsN2dg is much larger than in LKfOsNdg. Then, if
we take both the weights for hopping and the weights for
attachment and detachment to scale the same way, LK dy-
namics will dominate due to its higher connectivity. In order
to have competition, the weight of each LK link has to be
decreased as prescribed in the Introduction such that the
weighted path lengths of the TASEP and LK are comparable.
Yet another way to generate competition would be to only
allow a finite(nonextensive) number of sites to cause attach-

FIG. 4. Illustration of the net-
work architecture corresponding
to the totally asymmetric simple
exclusion process(TASEP) and
Langmuir kinetics(LK ).
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ment and detachment with a system-size-independent rate
[41]. The network structure of the totally asymmetric exclu-
sion process with Langmuir kinetics also indicates why stan-
dard matrix product ansatz methods could be rather difficult
to implement.

C. Fock space formulation of stochastic dynamics

It is sometimes convenient to formulate problems in sto-
chastic particle dynamics in terms of aquantum Hamiltonian
representationinstead of a master equation. This formalism
was developed already some time ago by several groups
[42–44]. In the meantime it has found a broad range of ap-
plications(see, e.g., Ref.[45]). We refer the reader for details
to various review articles[5,45] and lecture notes[46,47].

In our case, the occupation numbersnisCd constitute in a
natural way state space functions by measuring whether site
i is occupiedsni =1d or not sni =0d in configurationC. The
corresponding Heisenberg equations forn̂istd then read

d

dt
n̂istd = n̂i−1stdf1 − n̂istdg − n̂istdf1 − n̂i+1stdg

+ vAf1 − n̂istdg − vDn̂istd s4ad

for any site in the bulk, while for sites at the boundaries one
obtains

d

dt
n̂1std = af1 − n̂1stdg − n̂1stdf1 − n̂2stdg,

s4bd
d

dt
n̂Nstd = n̂N−1stdf1 − n̂Nstdg − bn̂Nstd.

The first line of Eq.(4a) is the usual contribution due to the
TASEP. Introducing the current operator

ĵ istd = n̂istdf1 − n̂i+1stdg,

one can rewrite the right-hand side of this line asĵ i−1− ĵ i,
which is a discrete form of the divergence of the current.
This part defines a dynamics which satisfies particle number
conservation. The second line of Eq.(4a) represents the ad-
ditional Langmuir kinetics, which acts as source and sink
terms in the bulk.

These equations can now be understood as equations of
motions for a quantum many body problem. There are dif-
ferent routes to arrive at a solution. For one-dimensional
problems there are many instances where exact methods are
applicable [5]. Coherent state path integrals are useful to
explore the scaling behavior at critical points[45,46,48].
One can also try to analyze the equations of motion directly
[49,50]. By taking averages of Eqs.(4a) and(4b) in order to
compute the time evolution ofkn̂istdl one needs the corre-
sponding averages of two-point correlations such askn̂i−1std
3f1−n̂istdgl. This two-point correlation function obeys itself
as an equation of motion connecting it to three-point and
four-point correlation functions. Thus we are led to an infi-
nite hierarchy of equations of motion, as is quite generally
the case for quantum many body systems[49,50]. To proceed

one can then utilize standard approximation schemes of
many body theory.

D. Symmetries

The system exhibits a particle-hole symmetry in the fol-
lowing sense. A jump of a particle to the right corresponds to
a vacancy move by one step to the left. Similarly, a particle
entering the system at the left boundary can be interpreted as
a vacancy leaving the lattice, and vice versa for the right
boundary. Attachment and detachment of particles in the
bulk is mapped to detachment and attachment of vacancies,
respectively. Therefore, one can easily verify that the trans-
formation

n̂istd ↔ 1 − n̂N−istd, s5ad

a ↔ b, s5bd

vA ↔ vD s5cd

leaves Eqs.(4a) and (4b) invariant. Due to this property we
can restrict the discussion to the casesvA.vD andvA=vD,
i.e., to K.1 and K=1, respectively. Eventually, forvA
=vD=0, one arrives back at the TASEP respecting the same
particle-hole symmetry described above.

III. SIMULATIONS, MEAN-FIELD APPROXIMATION,
AND CONTINUUM LIMIT

In this section we describe the Monte Carlo simulations
(MCS) and the mean-field approximation(MFA) we have
used to compute the stationary average profilekn̂il and the

average currentk ĵ il=kn̂is1−n̂i+1dl.

A. Simulations

We have performed Monte Carlo simulations with random
sequential updating using the dynamical rules(a)–(e) and
evaluated both time and sample averages. The resulting pro-
files coincide in both averaging procedures for given param-
eters and different system sizes. In the simulations, stationary
profiles have been obtained either over 105 time averages
(with a typical time intervalù10 N between each step of
average) or over the same number of samples(in the case of
sample averages).

B. Mean-field approximation and continuum limit

Averaging Eqs.(4a) and(4b) over the stationary ensemble
relates the mean occupation number to higher order correla-
tion functions. The mean-field approximation consists in ne-
glecting these correlations(random phase approximation)
[49,50]:

kn̂istdn̂i+1stdl = kn̂istdlkn̂i+1stdl. s6d

Here, averages in the stationary statek l are actually time
independent and correspond to either sample or time aver-
ages due to the ergodicity property of the finite system. In
this approximation the average current is given by
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k ĵ il = kn̂istdlf1 − kn̂i+1stdlg.

Once we have defined the average density at sitei as ri
=kn̂istdl, Eq. (4a) results in

ri−1s1 − rid − ris1 − ri+1d + vAs1 − rid − vDri = 0, s7ad

while at the boundaries, Eqs.(4b), one obtains

as1 − r1d − r1s1 − r2d = 0,
s7bd

rN−1s1 − rNd − brN = 0.

Note that the average density is a real number with 0øri
ø1, and Eqs.(7a) and (7b) form a set ofN real algebraic
nonlinear relations, which can be solved numerically.

An explicit solution of the previous equations can be ob-
tained by coarse-graining the discrete lattice with lattice con-
stant«=L /N to a continuum, i.e., considering acontinuum
limit. To simplify notation, we fix the total length to unity,
L=1. For large systemsN@1, «!1, the rescaled position
variablex; i /N, 0øxø1, is quasicontinuous. An expansion
of the average densityrsxd;ri in powers of« yields

rsx ± «d = rsxd ± «]xrsxd + 1
2«2]x

2rsxd + Os«3d. s8d

Taking the scaling of the Langmuir rates, Eq.(1), into ac-
count, Eqs.(7a) and(7b) are to leading order in« equivalent
to the following nonlinear differential equation for the aver-
age profile at the stationary state[17]:

«

2
]x

2r + s2r − 1d]xr + VAs1 − rd − VDr = 0. s9d

Equation (7b) now translates into boundary conditions for
the density field,rs0d=a andrs1d=1−b. This can be inter-
preted as if the system at both ends is in contact with particle
reservoirs of respective fixed densitiesa and 1−b. Note that
the binding constantK remains unchanged in this limit.

For finite «, the average current is writtenj =−« /2]xr
+rs1−rd. In the continuum limit«→0+, this suggests that
j =rs1−rd and that the current is bounded,j ø1/4. However,
this bound holds only if the density is a smooth function of
the positionx. We shall show that density discontinuities can
arise in the continuum limit. Then, for small«, these discon-
tinuities would appear as rapid crossover regions where one
cannot neglect the first order derivative term in the current
definition so that the relationj ø1/4 needs not to be satis-
fied. The inequality can be violated also by the additional
contribution arising from current fluctuations neglected in
the mean-field approximation; see, e.g., Fig. 10 at the system
boundaries.

The equations obtained in mean-field approximation and
the subsequent continuum limit still respect the particle-hole
symmetry mentioned above. In terms of the continuous av-
eraged densityr, the symmetry now readsrsxd°1−rs1
−xd, a↔b ,VA↔VD. Note that a numerical solution of the
differential equation above necessarily uses a discretization.
Using a standard algorithm for integrating differential equa-
tions, one would merely recover the original mean-field
equations(7a) and (7b).

Equation(9) has mathematical similarities to the station-
ary case of a viscous Burgers equation[51–53]

]tr −
«

2
]x

2r + s]r jd]xr = FA − FD. s10d

In the Burgers equationr is identified with the fluid velocity
and j is related to this velocity viaj =r2/2. In our case, the
hard-core interaction between particles implies a nonlinear
current-density relationship. As shown above, one finds in
the continuum limit a parabolic relationj =rs1−rd. Dissipa-
tion is due to the term«]x

2r, while the sources represent
fluxes from and to the bulk reservoirFA=VAs1−rd andFD

=VDr. The net source termFA−FD=sK+1dVDsrl −rd is
positive or negative depending on whether the densityr is
below or above the Langmuir isotherm,rl =K / sK+1d, ex-
pressed in terms of the binding constantK=VA/VD. In con-
junction with the nonlinear current-density relation this im-
plies that the density of the Langmuir isotherm will act like
an “attractor” or “repellor.” If the slope of the current-density
relation is positive,]r j .0, and the density at the left end
falls below the Langmuir isotherm, the bulk reservoir will
feed particles into the system. As a result, the density grows
towardsrl as one moves away from the boundary. In con-
trast, for a negative slope]r j ,0, i.e., for densities larger
than 1/2, the density profiles are “repelled” from the Lang-
muir isotherm. The latter case can also be understood as an
“attraction” by the Langmuir isotherm if read starting from
the right end of the system. Then, depending on whether the
density at the right boundary is larger or smaller thanrl,
there is a loss or gain of particles from the reservoir as one
moves away from the right boundary into the bulk. This will
turn out to be an important principle for the discussion of the
density profiles in later sections; see, e.g., Sec. IV B.

From the analogy to fluid dynamics problems[54] one
expects singularities such as shocks in the densityr to ap-
pear in the inviscid or nondissipative limit«→0+. This con-
clusion can also be inferred by a direct inspection of the
nonlinear differential equation(9) in the limit «=0. It re-
duces to a first order differential equation,

s2r − 1d]xr + VAs1 − rd − VDr = 0, s11d

instead of a second order one, while the solution still has to
satisfy two boundary conditions. Such a boundary value
problem is apparentlyoverdetermined. However, we can de-
fine solutions of Eq.(11) respecting only one of the boundary
conditions. Depending on whether they obey the boundary
conditions on the left or right end of the lattice we call them
the left solution ra and theright solution rb, respectively.
Then, for 0,«!1 the full solution of Eq.(9) will be close
to ra for positions on the left side of the system and similarly
to rb on the right side. In general, we cannot expect both
solutions to match continuously at some point in the bulk of
the lattice. Instead, for a large but finite system, the solution
of Eq. (9) will exhibit a rapid crossover from the left to the
right solution. In the limit«→0+ this crossover regime de-
creases in width and eventually leads to a discontinuity of
the average density profile at some positionxw. Note that the
discontinuity shows up only on the scale of the system size,
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i.e., in the rescaled variablex, whereas on the scale of the
lattice spacing the crossover region always covers a large
number of lattice sites.

To locate the position of the discontinuityxw in the limit
of large system sizesN@1, i.e.,«→0+, it is useful to derive
a continuity equation for the currentj and the sources
FA,FD. Consider Eq.(9) in the form]xj =FA−FD, where j
=−« /2]xr+rs1−rd. Integrating over a small region of width
2dx close to xw, one obtains jsxw+dxd− jsxw−dxd
=exw−dx

xw+dxsFA−FDddx;S«. In the limit «→0+ the relation sim-
plifies to jasxw+dxd− jbsxw−dxd=S0, where we have defined
the left currentja=ras1−rad and similarly for the right cur-
rent jb. Now, for dx→0+, the contribution due to the sources
S0 is of orderdx yielding thematching conditionin terms of
the left and right currents

jasxwd = jbsxwd. s12d

The equivalent condition for the densities reads

rasxwd = 1 −rbsxwd. s13d

A discontinuity of the density profile such as adomain wall
can appear in the system depending on whether the previous
condition is fulfilled for 0øxwø1. Relation(13), therefore,
defines implicitly where a domain wall is located in the sys-
tem. It allows one to compute the domain wall positionxw as
well as its heightDw=rbsxwd−rasxwd. The domain wall sepa-
rates regions of lowsr,1/2d and high densitysr.1/2d. In
the ensuing phase diagram this will lead to an extended re-
gime of phase coexistence.

We shall see that in addition to domain walls, there may
appear also discontinuities in the current[55], which are lo-
cated at the boundary of the system. We refer to them as
boundary layers.

IV. ANALYTIC SOLUTION OF THE CONTINUUM
EQUATION

In this section, we will show in detail how one can treat
the continuum equations, Eq.(9), analytically in the limit
«→0+. We shall compare these results with numerical solu-
tions of Eq. (9) for finite « [56], and with corresponding
profiles obtained from Monte Carlo simulations. For the
Monte Carlo simulation the plots will show the average den-
sity kn̂il and the average currentk ĵ il=kn̂is1−n̂i+1dl. The den-
sities and currents obtained from the numerical integration of
the mean-field equations at finite« will be indicated asr«

and j«=−« /2]xr«+r«s1−r«d in the figures, respectively.
This discussion will result in a classification of the pos-

sible solutions as a function of the entry and exit ratesa and
b, the binding constantK=VA/VD, and the detachment rate
VD (phase diagram). Due to the particle-hole symmetry we
can restrict ourselves to valuesKù1. Then, there are two
cases to distinguish:K=1 andK.1. For K=1 the constant
density profile,rl =K / sK+1d, given by the Langmuir kinetics
coincides with a point of particular symmetry of the TASEP.
Indeed, for a density ofr=1/2 the system is dual under
particle-hole exchange, the nonlinear term in Eq.(9) van-
ishes, and it corresponds to a point of maximal current[57].

It will turn out that K=1 introduces particular features and
requires a specific treatment and discussion. Since it is tech-
nically simpler we discuss this case first.

A. The symmetric case:K=1

The mathematical analysis is simplified by the fact that
the attachment and detachment rates are equal,VA=VD
;V. Then Eq.(11) factorizes to

s2r − 1ds]xr − Vd = 0. s14d

The boundary conditions readrs0d=a andrs1d=1−b. Note
that this equation is symmetric with respect to particle-hole
exchange. Indeed, except for the boundaries, the equation is
invariant under the transformationrsxd°1−rs1−xd. This
has important consequences for the density profiles, as will
become clear in the following.

1. The density and current profiles

Equation (14) has only two basic solutions. A constant
densityrlsxd=1/2 identical to the stoichiometry in Langmuir
kinetics and also the density in the maximal current phase of
the TASEP. The other solution is a linear profiler=Vx+C.
The value of the integration constantC depends on the
boundary condition. One findsCa=a and Cb=1−b−V for
solutions,rasxd and rbsxd, matching the density at the left
and the right boundaries, respectively. Depending on how the
three solutionsrasxd, rbsxd, and rlsxd can be matched, dif-
ferent scenarios arise for the full density profilersxd. In the
following we discuss the characteristic features of the solu-
tion in each quadrant of thea–b phase diagram for fixedV.

(a) Lower left quadrant: a ,bø1/2. In this case the
boundary conditions enforce a density less than 1/2 and
greater that 1/2 at the left and right boundaries, respectively.
This allows for a continuous density profile, where a con-
stant density ofrl =1/2 intervenes between the two linear
solutions emerging from the left and right boundaries. The
corresponding positions separating the low density from the
maximal current phase,rasxad=1/2, and themaximal cur-
rent phase from the high density phase,rbsxbd=1/2, are
given byxa=s1−2ad /2V.0 andxb=s2b+2V−1d /2V,1,
respectively. The phase boundaryxa→0+ moves to the left
upon increasing the entry ratea→1/2− and similarly xb

→1− for the exit-rateb→1/2−. Hence, depending on the
values of the pointsxa andxb, one can classify the possible
solutions according to the relative ordering of the phase
boundaries:(i) xa,xb, (ii ) xa=xb, and(iii ) xa.xb.

(i) The density profile is continuous and piecewise linear
and given by

rsxd = 5Vx + a for 0 ø x ø xa,

1/2 for xa ø x ø xb,

Vsx − 1d + 1 −b for xb ø x ø 1.

s15d

One observes a region of three-phase coexistence: a low den-
sity phasesLDd with rsxd,1/2 and jsxd,1/4 for 0øx
øxa, a maximal current phasesMCd with rsxd=1/2 and
jsxd=1/4 forxaøxøxb, and a high density phasesHDd with
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rsxd.1/2 and jsxd,1/4 for xbøxø1. For a plot of the
densities and currents see Fig. 5.

(ii ) For xa=xb the width of the intermediate maximal cur-
rent phase vanishes and the solution becomes a simple linear
profile, continuously matching the densities of the LD and
HD phase.

(iii ) Upon further increasingxa over xb, the intervening
maximal current phase is lost and it is no longer possible to
continuously concatenate the linear density profiles of the
low and high density phase. There is necessarily a density
discontinuity, located at a pointxw where the currents corre-
sponding to the right and left solutions match,jasxwd
= jbsxwd. The position of the ensuing domain wall may be in
or outside of the system. This leads us to further distinguish
between the following three subcases:

a. If xw,0 the density profile in the bulk is above 1/2,
i.e., in a HD phase. The profile is entirely described by the
solution rbsxd up to a boundary layer at the left end. One
observes that the boundary layer corresponds to a disconti-
nuity in the current. The bulk currentjbsx→0+d does in gen-
eral not match the incoming particle fluxas1−ad at the left
boundary(see Fig. 6).

b. For 0,xw,1 the domain wall is within the system
boundaries. Then the density profile connects a LD profile to
a HD profile via a domain wall at positionxw=sV−a
+bd /2V [58]. The density profile is given by

rsxd = HVx + a for 0 ø x ø xw,

Vsx − 1d + 1 −b for xw ø x ø 1.
s16d

Here we can already illustrate an important feature of our
model. As one can infer from Fig. 7, the current forms a cusp
at the position of the domain wall, withjasxd and jbsxd being
monotonically increasing and decreasing functions ofx, re-
spectively. This follows directly from the continuum equa-
tion, Eq.(10), and the density dependence of the source term
FA−FD=2Vs1/2−rd, which is positive or negative depend-
ing on whether the density is smaller or larger than 1/2.
Hence the domain wall is located at a maximum of the cur-
rent. In addition, the strict monotonicity of the current also

FIG. 5. Average densityrsxd (a) and currentjsxd (b) for param-
etersa=0.4,b=0.4,V=0.3, andK=1. In this parameter range one
observes a three-phase coexistence: a maximal current phase is in-
tervening between a low and high density phase. The profiles are
computed analytically in the inviscid limit(dashed lines) and nu-
merically for «=10−3 within a mean-field approximation(solid
smooth line), and from Monte Carlo simulations(solid wiggly line).
Note that, within the resolution of the figures, the Monte Carlo
results and the numerical mean-field results cannot be distin-
guished. The analytic density profile is shown for the solutions re-
specting the left and right boundary conditions,ra andrb; we also
show the Langmuir isothermrl =1/2.

FIG. 6. Average densityrsxd (a) and currentjsxd (b) for param-
etersa=0.4, b=0.1, V=0.3, andK=1. We use the same legend as
in Fig. 5. The bulk profile is almost completely described by the
solutionrb matching only the right boundary condition. At the left
end, the bulk density does not match the boundary condition. As a
result, a boundary layer appears. Only there does one find a notice-
able difference between the profiles of the Monte Carlo simulation,
the numerical computation at finite«, and the analytic profile for
vanishing«.

FIG. 7. Average densityrsxd (a) and currentjsxd (b) for param-
etersa=0.2, b=0.1, V=0.3, andK=1. We use the same legend as
in Fig. 5. Only in proximity to the domain wall do the results from
the mean-field approximation show deviations from the density pro-
file obtained by Monte Carlo simulation.

TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS… PHYSICAL REVIEW E 70, 046101(2004)

046101-9



implies that the domain wall islocalized. A displacement of
the domain wall to the right ofxw would result in a current
ja. jb. This in turn would increase the influx of particles at
the left boundary, which will drive the domain wall back to
its original positionxw [59].

c. The solution forxw.1 can be inferred by particle-hole
symmetry from case a. The low density profile is given by
the solutionrasxd up to a boundary layer at the right end.

(b) Lower right quadrant: a.1/2, b,1/2. Here the
density at both left and right boundaries is larger thanrl
=1/2. Two different scenarios are possible. In the first sce-
nario, the slopeV of the density profilerbsxd (matching the
density at the right boundary) is so small thatrbsxd is always
larger thanrl =1/2; this requiresV,1/2−b. Then, the bulk
of the system is in the HD phase with a boundary layer on
the left. This scenario is identical to the previous case a such
that there is no qualitative change in the bulk upon crossing
the linea=1/2. In other words, there is no phase boundary
and the system remains in the HD phase. In the second sce-
nario, the slopeV.1/2−b such that we have a phase
boundary between a high density and a maximal current
phase. This solution can also be viewed as a limit of the
three-phase coexistence region, where fora→1/2− the
phase boundaryxa leaves the system through the left end and
a boundary layer is created replacing the LD region(see
Fig. 8).

(c) Upper left quadrant: a,1/2, b.1/2. This region in
parameter space is obtained using particle-hole symmetry
from the results for the lower right quadrant in the preceding
paragraph(see Fig. 9).

(d) Upper right quadrant: a ,b.1/2. Here two boundary
layers are formed, and the bulk of the system is characterized
by a constant density equal to 1/2(see Fig. 10). This corre-
sponds to the maximal current phase, which remains un-
changed as compared to the TASEP without particle on and
off kinetics. Note again that due toK=1 the density with
maximal current coincides with the Langmuir isotherm
rl =1/2.

2. The phase diagram

The analysis of the current and density profiles allows one
to draw cuts of the phase diagram in thesa ,bd plane for
fixed values ofV. Note that the particle-hole symmetry ren-
ders all diagrams symmetric with respect to the diagonala
=b. Depending on the kinetic rateV one can distinguish
three topologies. Topologies of the phase diagrams change at
critical valuesV=1/2 andV=1; see Fig. 11.

For 0,V,1/2, Fig. 11(a), the phase diagram consists of
seven phases. A three-phase coexistence region LD-MC-HD
at the center is surrounded by three two-phase coexistence
regions LD-HD, MC-HD, and LD-MC. Pure LD, HD, and
MC phases are contiguous to the two-phase regions. All lines
between different regions represent continuous changes in
the average densityr. The three-phase coexistence region,
and two of the two-phase coexistence regions(LD-MC and

FIG. 8. Average densityrsxd (a) and currentjsxd (b) for a
=0.8,b=0.35,V=0.3, andK=1. We use the same legend as in Fig.
5. Except for the left boundary layer, the analytic solution is de-
scribed by the Langmuir densityrl =1/2 and thedensityrb match-
ing the right boundary condition.

FIG. 9. Average densityrsxd (a) and currentjsxd (b) for param-
etersa=0.35,b=0.8, V=0.3, andK=1. Note that the curves map
to those of Fig. 8 by particle-hole symmetry.

FIG. 10. Average densityrsxd (a) and currentjsxd (b) for pa-
rametersa=0.8,b=0.8,V=0.3, andK=1. We use the same legend
as in Fig. 5. The bulk density profile is given by the Langmuir
density rl =1/2 which corresponds also to the maximal current
phase. Due to fluctuations, neglected in the mean-field approxima-
tion, the current profile obtained from the simulation exceeds the
value 1/4 at each boundary.
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MC-HD) are characterized by continuous density profiles.
This is mainly due to the maximal current phase with density
rlsxd=1/2. Acting as a “buffer,” this phase intervenes be-
tween the LD and HD phase or connects the LD and HD
phases with the right and left boundary, respectively. Discon-
tinuities only appear as current and density discontinuities
(boundary layers) at the system boundaries. This has to be
contrasted with the density profile in the coexistence region
between the LD and HD phase. Here, a density discontinuity
in the bulk(domain wall), separating both phases, is formed.

It is also interesting to consider the limitV→0, as one
expects to recover the TASEP scenario. Indeed, using the
previous results, it is easy to show that for decreasingV, the
width of the two-phase regions, as well as that of the three-
phase region, shrinks to zero. The resulting diagram repro-
duces the well-known topology of the pure TASEP in the
mean-field approximation[60].

Upon increasingV up to the value 1/2, we find the first
topology change in the phase diagram. The HD and LD
phases gradually disappear, leaving only the two-phase or
three-phase coexistence regions atV=1/2; seeFig. 11(b). If

V becomes larger than 1, the LD-HD coexistence region
disappears; see Fig. 11(c).

The Langmuir kinetics is approached forV→`. Al-
though the topology of the phase diagram does not change
anymore, the phases become almost indistinguishable for
large kinetic rates. Here the Langmuir isothermrl =1/2 oc-
cupies most of the bulk, whereas the LD and HD regions are
confined to a vicinity of the boundaries.

B. The generic case:K.1

Though simpler to analyze, the previous caseK=1 is
somewhat artificial as it requires a fine-tuning of the on and
off rates. Generally, one would expectKÞ1. Due to particle-
hole symmetry we can restrict ourselves toK.1. The analy-
sis becomes significantly more complex since the continuum
equation for the density, Eq.(11), no longer factorizes into a
simple form as forK=1.

1. The density and current profiles

To proceed, it is convenient to introduce a rescaled den-
sity of the form

ssxd =
K + 1

K − 1
f2rsxd − 1g − 1, s17d

where s=0 corresponds to the Langmuir isothermrl
=K / sK+1d. Since the densityrsxd is bound within the inter-
val f0,1g, the rescaled densityssxd can assume values within
the interval f−2K / sK−1d ,2 /sK−1dg. Then the continuum
equation(11) simplifies to

]xssxd + ]xlnussxdu = VD
sK + 1d2

K − 1
. s18d

Direct integrations yield

ussxduexpfssxdg = Ysxd, s19d

where the functionYsxd is

Ysxd = ussx0duexpHVD
sK + 1d2

K − 1
sx − x0d + ssx0dJ , s20d

andssx0d is the value of the reduced density at the reference
point x0. In particular, the ones that match the boundary con-
dition on the left or right end of the system are written:

Yasxd = uss0duexpHVD
sK + 1d2

K − 1
x + ss0dJ ,

s21d

Ybsxd = uss1duexpHVD
sK + 1d2

K − 1
sx − 1d + ss1dJ ,

where the boundary valuesss0d andss1d can be written in
terms ofa andb using Eq.(17) and the boundary conditions
rs0d=a andrs1d=1−b.

Equations of the form of Eq.(19) appear in various con-
texts such as enzymology, population growth processes, and
hydrodynamics(see, e.g., Ref.[61]). They are known to have
an explicit solution written in terms of a special function

FIG. 11. Cut of the phase diagram on thesa ,bd plane in the
mean-field approximation forK=1 and different values ofV: (a)
V=0.3,(b) V=0.5, and(c) V=1.0. The cases(a)–(c) correspond to
the three different topologies of phase diagrams discussed in the
main text. All lines represent continuous transitions between differ-
ent regions in the sa ,b ,K=1,VD=constd cut of the four-
dimensional parameter space. The line parallel to the antidiagonal is
defined through the relationa+b+V=1. It represents the border
line where the pointsxa andxb (i.e., the points where the left and
right solutionsra and rb meet the Langmuir isothermrl =1/2)
coincide,xa=xb. The phase boundaries of the LD-HD coexistence
phase,xw=0 andxw=1, correspond to regions in which the domain
wall is located at one of the system boundaries. These lines were
computed by using the matching conditions for the currents:jas1d
=bs1−bd and jbs0d=as1−ad. In (a), we also emphasize the pres-
ence of the boundary layers at the left or the right end of the system.
These are indicated with the letters “l” and “r,” respectively. Such
boundary layers remain present in the same regions as in(a) also for
increasingV.
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calledW function[61]:

ssxd = W„Ysxd…, ssxd . 0,
s22d

ssxd = W„− Ysxd…, ssxd , 0.

The LambertW function (see Fig. 12) is a multivalued func-
tion with two real branches, which we refer to asW0sjd and
W−1sjd. The branches merge atj=−1/e, where the Lambert
W function takes the value −1. The first branch,W0sjd, is
defined forjù−1/e; it diverges at infinity sublogarithmi-
cally. The second branch,W−1sjd, is always negative and
defined in the domain −1/eøjø0. In the vicinity of the
point j=−1/e the functionWsjd behaves like a square root
of j since one gets]jW=W/ fs1+Wdjg by the definition of
the LambertW function,WsjdexpfWsjdg=j.

Using these properties of the LambertW function, the
branch ofW is selected according to the value of the rescaled
densitys. For sP f−2K / sK−1d ,−1g the relevant solution is
W−1s−Yd, while for sP f−1,0g one obtainsW0s−Yd. Finally,
in the intervalsP f0,2/sK−1dg one findsW0sYd.

The solutions are matched to the boundary conditions at
the left and right ends according to the entry or exit rates.
The left and right solutions,rasxd andrbsxd, are then com-
puted from the expressions in Eqs.(23) upon using the co-
ordinate transformation given by Eq.(17).

Figure 13 provides a graphical representation of the pos-
sible set of solutions of the first order differential equation,
Eq. (18). In order to decide which one of them is actually
physically realized, one needs to go back to the full equation,
either in its discrete form Eq.(7a) or its continuous version
Eq. (9). Analogous to the TASEP a solution matching the
density prescribed by the left boundary condition is stable
only if a,1/2 [62]. Such solutions are shown as thick lines
in Fig. 13(a). They are monotonically increasing towards the
Langmuir isothermrl =K / sK+1d.1/2. This can be under-
stood as a consequence of the accumulation of particles from
the bulk reservoir via the Langmuir kinetics with increasing
distance from the left boundary. One might now expect that
the density will finally approach the Langmuir isotherm, but
this is not the case. Instead, we find that the densityrasxd
never increases beyond 1/2, where the current reaches its
largest possible valuejmax=1/4. Mathematically, this is a

direct consequence of the analytic properties of the Lambert
W function, which has a branching point at a density 1/2; see
Fig. 13(a). With decreasinga the site whererasxd meets the
density 1/2 moves to the right. At a critical value of the entry
rate, acsVD ,Kd, the branching point of the left solutionra

touches the right boundary.
Similarly to the discussion in the previous paragraph, so-

lutions matching the right boundary condition are stable only
if bø1/2. The corresponding density profiles, shown as
thick lines in Fig. 13(b), are always in a high density regime,
i.e., rbsxdù1/2. If the density at the right boundary matches
the Langmuir isotherm, the right solution is flatrbsxd=rl.
Otherwise, the source terms do not cancel, leading to a net
detachment/attachment flux such that the right density pro-
files decay monotonically towards the Langmuir isotherm as
one moves from the right boundary to the bulk. As a conse-
quence, the right densityrbsxd never crosses the Langmuir
isotherm. The density profile forb=1/2 is anextremal solu-
tion exhibiting the lowest possible densitysr=1/2d and
highest currents j =1/4d at the right end, which then also
coincides with the branching point of the LambertW func-
tion.

In conclusion, for the left rescaled solutionsasxd, an entry
rate 0øaø1/2 implies −2K / sK−1døsø−1. Hence we
have according to the previous analysis

sasxd = W−1„− Yasxd… , 0. s23ad

For the right rescaled solutionsbsxd, one finds correspond-
ingly

FIG. 12. The real branchesW0sjd andW−1sjd of the LambertW
function.

FIG. 13. Mathematical solutions for(a) the left densityrasxd
and (b) the right densityrbsxd for K=3, VD=0.1 and different
values of the entry and exit ratea and b. The solutions which
approach the Langmuir isotherm are those fora ,bø1/2 (thick
lines). The solutions where the branching point coincides with the
right boundary are indicated byac=0.038 532. . . andbc=1/2.
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sbsxd = 5W0„Ybsxd… . 0, 0ø b , 1 − rl

0, b = 1 −rl

W0„− Ybsxd… , 0, 1 −rl , b ø 1/2,

s23bd

whererl =K / sK+1d is the constant density of the Langmuir
isotherm. After the coordinate change(17), the general solu-
tion of the continuum mean-field equation at«→0+, Eq.
(11), is obtained by matching left and right solutionsra and
rb. The remaining task is now to identify the different sce-
narios where domain walls and boundary layers appear. Such
analytic results are confirmed by the numerical computation
at finite «.

(a) Lower left quadrant:a ,bø1/2. This is the only case
where there are solutions that approach the Langmuir iso-
therm in the bulk and match both boundary conditions. The
full density profile is obtained by finding the positionxw
where the left and right currents coincide, i.e.,rasxwd=1
−rbsxwd. One has to consider three cases:(i) 0,xw,1, (ii )
xw,0, and(iii ) xw.1.

In case(i), a domain wall is formed separating a region of
low density on the left with a region of high density on the
right. Depending on whether 1−b is above or belowrl, dif-
ferent profiles are observed, see Figs. 14(a) and 14(c). In the
caseb=1−rl, one obtains a flat profile ofrb matching the
value of the Langmuir isothermrl. We note again that the

left and right solutions approach the Langmuir isotherm in
the bulk. In analogy with the caseK=1, the domain wall is
stabilized by the current profiles controlled by the boundary
conditions.

In cases(ii ) and(iii ), one of the two phases is confined to
the boundary. Explicitly, for(ii ) the bulk is characterized by
a HD with a boundary layer at the left end, see Fig. 15(a).
Correspondingly, for(iii ) the solution exhibits a LD bulk
phase accompanied by a boundary layer on the right end side
of the system, see Fig. 16(a).

(b) The upper left quadrant, a,1/2, b.1/2. As dis-
cussed above, forb.1/2 the solutions of the first order
differential equation, Eq.(11), matching the right boundary
condition are physically unstable. Instead, the actual density
profile at the right boundary approaches the extremal solu-
tion W0s−Yb=1/2d of the first order differential equation. The

FIG. 14. Average densityrsxd (a)–(c) and corresponding current
jsxd (b)–(d) for a ,bø

1
2 in a parameter regime showing phase sepa-

ration. We have chosenVD=0.1, K=2 and (a) and (b) a=0.1,b
=0.1 or (c) and (d) a=0.3,b=0.4. Solid lines correspond to the
numerical solution of the mean-field theory with«=10−3. Monte
Carlo simulations are shown as a solid wiggly line. The flat dashed
line represents the Langmuir isotherm,rl =K / sK+1d. The other
dashed lines represent the analytic solutions given by the branches
of the LambertW functions matching the boundary conditions on
the right and left end, respectively. For both cases(a) and (c), the
solution matching the left boundary conditionra is given by the
branch of the LambertW function W−1s−Yad. For the solution
matching the right boundary condition,rb, one has to consider the
branchW0. For (a) the branch ofW has the argumentYbsxd, while
for (c) the argument is −Ybsxd (see as illustrated also in Fig. 13).

FIG. 15. Average densityrsxd (a) and currentjsxd (b) for a
=0.3,b=0.1,VD=0.1, andK=2. We use the same legend as in Fig.
14. Except the left boundary layer, the bulk density profile is given
by the LambertW function, rb=W0(Ybsxd).

FIG. 16. Average densityrsxd (a) and currentjsxd (b) for a
=0.1,b=0.4,VD=0.1, andK=2. We use the same legend as in Fig.
14. Except the right boundary layer, the bulk density profile is given
by the LambertW function, ra=W−1(Yasxd).
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density difference to the boundary value is bridged by a
boundary layer, which vanishes in the limit«→0+.

For the discussion of the density profiles in the upper left
quadrant we can simply parallel the arguments used for the
lower left quadrant, once the right solution has been substi-
tuted with the extremal one. Depending on the matching of
the current, one finds again three cases, a LD phase, a two-
phase LD-HD coexistence, and a HD phase. We conclude
that the phases of the lower left quadrant extend tob.1/2
with phase boundaries which are independent of the exit rate
b, i.e., parallel to theb axis. The HD phase forb.1/2 has
some interesting features which are genuinely distinct from
the HD phase forb,1/2. The density profile in the bulk is
independentof the entrance and exit rates,a and b, at the
left and right boundaries; it is given by the extremal solution
W0s−Yb=1/2d. The density approachesrsLd=1/2 andhence
the current maximal possible valuejmax=1/4 at theright
boundary. These features are reminiscent of the maximal cur-
rent phase for the TASEP. The only difference seems to be
that here current and density are spatially varying along the
system while they are constant for the TASEP. The essential
characteristic in both cases is that the behavior of the system
is determined by the bulk and not the boundaries. One is
reminded of similar behavior of the Meissner phase in super-
conducting materials. In the ensuing phase diagram we will
hence indicate this regime as the “Meissner”(M) phase to
distinguish it from the HD phase with boundary dominated
density profiles[63]. Note also that the parameter range for
the M phase is broadened as compared to the maximal cur-
rent phase of the TASEP.

(c) The remaining quadrants, a.1/2. At a=1/2, thesys-
tem is already in the high density phase where the bulk pro-
file does not match the entry rate. Increasinga beyond the
value 1/2 therefore merely affects the boundary layer at the
left end. The density profile is given by the right solutionrb

for b,1/2 or the extremal one forbù1/2 as before; for an
illustration compare Fig. 17. Forbù1/2 the same conclu-
sion applies as in the preceding paragraph, resulting in a
“Meissner” phase for the upper right quadrant.

Let us conclude this section with some additional com-
ments on boundary layers. Boundary layers arise from a mis-
match between the bulk profile and the boundary conditions.
They can bend either upwards or downwards depending on
whether the left or right boundary rates are above or below
the values of the bulk solution at the ends. For example, in
the right lower quadrant of the HD phase, a change from a
depletion to an accumulation layer at the left end of the sys-
tem occurs ata=rbs0d for b,1/2.

2. The phase diagram

We discuss the topology of the phase diagram with re-
spect to cuts in thesa ,bd plane for different values ofK and
VD. We first consider the situation in whichVD is fixed and
K increases, starting from values slightly larger than unity.
Figure 18(a) shows the phase diagram forK=1.1. A low
density (LD) phase occupies the upper left of the plane,
while a high density(HD) and a Meissner(M) phase are
located on the right. In between there is a two-phase coex-
istence region(LD-HD). In the coexistence phase a domain

wall is localized at the pointxw in the bulk. The boundaries
of the coexistence region in the phase diagram are deter-
mined by those parameters where the domain wall hits either
the entrance, i.e.,xw=0, or the exit of the system,xw=1. For
b.1/2, the density profile only develops a boundary layer
at the right end, but remains unchanged in the bulk. Since the
domain wall position becomes independent ofb, the bound-
aries of the two-phase coexistence region become parallel to
the axisa=0. It is important to remark that from the analytic
results the left solutionra is strictly smaller than 1/2, except
for the special pointC in the phase diagram whereras1d
=b=1/2. Weshall see in Sec. V B that in the vicinity of this
point the domain wall exhibits critical properties.

Upon increasingK, the LD phase progressively shrinks to
a region close to theb axis, while the size of the two other
phases increases; see Figs. 18(a) and 18(b). A change of to-
pology occurs when the LD phase collapses on this axis
which happens upon passing a critical value ofK. This criti-
cal value depends onVD and can be computed using the
expressions in Eqs.(13), (23a), and(23b). A further increase
of K results in a decrease of the extension of the LD-HD
region in the phase diagram; see Fig. 18(c). Eventually, for
very large K the average bulk density in the HD and M
regions approaches saturationrbulk=1.

Similarly, increasingVD at fixed K, the same topology
change occurs, as described above; see Fig. 19. However, we
note the different limiting behaviors forVD→0+ and VD
→`. In the first case, we are considering the limit of the
model to the TASEP for a given binding constantK (al-
though KÞ1). The two-phase coexistence region LD-HD
shrinks continuously to the linea=b. In the same limit, in
the upper right quadrant,a ,b.1/2, the M phase approaches
continuously the MC phase of the TASEP. For a very large
detachment rateVD, the right boundary of the LD-HD coex-
istence phase approaches a straight line at finite entry ratea
that can be computed from the analytic solution as equal to

FIG. 17. Average densityrsxd (a) and currentjsxd (b) for VD

=0.1,K=2, a=0.75 andb=0.75. We use the same legend as in Fig.
14. Except for the left and right boundary layers, the bulk profile
obtained from the analytic mean-field result is given by the branch
rbsxd=W0(−Ybsxd) of the LambertW function computed forb
=1/2.
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1−rl. In the same limit, the average density in the bulk
reaches asymptotically the valuerbulk=rl of the Langmuir
isotherm.

Eventually, one observes that all phase boundaries be-
tween the LD-HD coexistence and the HD phase, i.e., where
the domain is pinned atxw=0, intersect at the same pointN
for any value of the detachment rateVD. This nodalpoint N
can be evaluated asa=b=1−rl =1/sK+1d. At this point,
indeed, the average densityr is given by the flat profile of
the Langmuir isothermrl =K / sK+1d which is obviously in-
dependent ofVD. As a result, the domain wall does not move
from xw=0 for any value of the detachment rateVD. Inter-
estingly, one remarks that both pointsC and N approach
continuously thetriple point of the TASEPa=b=1/2 in the
simultaneous limitVD→0+ andK→1+.

V. DOMAIN WALL PROPERTIES

The knowledge of the analytic solution in the mean-field
approximation allows for a detailed study of the behavior of
the domain wall height and position upon a change of the

system parameters. While the results for the symmetric case
K=1 are more or less trivial, novel properties emerge for
K.1. In this section, we shall start from the description of
the domain wall behavior on thesa ,bd plane of the phase
diagram along trajectories of constant entry or exit rates,
respectively.

A. Position and amplitude of the domain wall
on the „a ,b… plane

Figure 20 shows the dependence of the domain wall po-
sition, xw, and height,Dw, on the entry ratea along lines of

FIG. 18. Cuts of the phase diagrams on thesa ,bd plane ob-
tained by the exact solution of the stationary mean-field equation
(11) in the inviscid limit «=0 for VD=0.1 and(a) K=1.1, (b) K
=3.0, and(c) K=6.0. The two lines, corresponding to regions in
which the domain wall is located atxw=0 andxw=1, are obtained
by using the matching conditions for the currents:jas1d=bs1−bd
and jbs0d=as1−ad. In (a), we emphasize several features. With the
letters “l” and “r” we indicate the presence of boundary layers in the
average density profile, forming at the left or the right end of the
system, respectively. In the lower left quadrant, the left and right
boundary layers form whenever the domain wall exits the system on
the left and right end side. At the phase boundary between the HD
and M phases, forb=1/2, aboundary layer forms at the right end.
Note that also in the M phaserbulk.1/2. The presence of boundary
layers in the different phases of thesa ,bd plane is conserved upon
variation of the binding constantK. The filled black circle repre-
sents the critical pointC where the domain wall exhibits critical
behavior; see Sec. V B. This critical point exits the plane for large
values ofK, accompanied with a topological change of the phase
diagram.

FIG. 19. Cuts of the phase diagrams as in Fig. 18 forK=3 and
(a) VD=0.01,(b) VD=0.05, and(c) VD=0.2. The white circle cor-
responds to anodalpoint of the systemN defined by the condition
a=b=1−rl =1/sK+1d. Every line xw=0 crosses this point for an
increasingVD.

FIG. 20. Domain wall positionxw (a) and heightDw (b) as a
function of the entrancea for different values of the exit rateb at
VD=0.1 andK=3. At the critical pointa=ac andb=1/2 a domain
wall forms at the right end of the system with an infinitesimal
height Dw. The value of the “critical” entry rate isac

=0.038 532. . . and can be written explicitly by using the analytic
solution in the mean-field approximation, see Eq.(25).

TOTALLY ASYMMETRIC SIMPLE EXCLUSION PROCESS… PHYSICAL REVIEW E 70, 046101(2004)

046101-15



constant exit rateb. As can be inferred from the structure of
the phase diagram presented in the preceding section, for a
small enough exit rateb, a domain wall can form in the bulk
with a finite amplitude even for a vanishing entry rate,a
=0. For largerb, one observes that the domain wall builds
up with a finite height on the right boundary only above
some specific value ofa. If one regards the domain wall
height as a kind of order parameter for the coexistence phase,
such a behavior can be termed a first order transition. This
has to be contrasted with the caseb=0.5, where the domain
wall enters the system atxw=1 with infinitesimal height at a
critical entry ratea=ac. In the same terminology this would
then be a second order transition. Indeed, as we are going to
discuss in the next section, the domain wall exhibits critical
properties at this point. In the phase diagram[Fig. 18(a)] the
corresponding critical point is indicated asC.

In all cases, upon increasinga and hence the influx of
particles, the domain wall changes its position continuously
from the right to the left end of the system. Then, at some
value a which depends onb, the domain wall leaves the
system with a finite amplitudeDw.

Similar behaviors of the position and height of the domain
wall are found as a function ofb for fixed values ofa; see
Fig. 21. Here one finds that, upon increasingb and hence
reducing the out-flux of particles, the domain wall position
xw moves continuously from the left to the right boundary.
For smalla, a domain wall is formed at a finite positionxw
and b=0. For larger entry rates, the domain wall forms at
xw=0 with a finite amplitude only for finite values of the exit
rateb. As before, the amplitude of the domain wallDw van-
ishes only for the critical valuea=ac at b=1/2. Indeed,
when a.ac and b.1/2, one notes that the domain wall
position xw remains constant upon changingb. As we have
explained above, this corresponds to the situation where the
bulk profile is unaffected by a change in the exit rate(M

phase). Only the magnitude of the boundary layer changes
with increasingb.

B. Critical properties of the domain wall

In this section, we discuss the domain wall properties
close to the special pointC where the domain wall forms
with infinitesimal height. The analysis will make use of the
analytic solution in the mean-field approximation. We show
that the domain wall emerges as a consequence of a bifurca-
tion phenomenon and calculate the resulting nonanalytic be-
havior of its height and position.

At the point C, the analytic solution of the mean-field
equations is described by a low density profilersxd=rasxd
that not only matches the boundary conditions at the left but
also the one at the right end; see Fig. 22. This implies that
the left and right currents also match at the right end of the
system. Interestingly, at this position the currentj is maximal
[64]. By a small change of the system parameters in the
two-phase LD-HD coexistence region the domain wall forms
at the right end characterized by a small height, provided that
bø1/2.

Using the analytic solution(23a) and (23b) one can give
an explicit expression of the critical pointC as a function of
VD andK. The condition that the left boundary matches the
value 1/2 atx=1 translates tosasx=1d=−1 or, using the
properties of the LambertW function, as

Yasx = 1d = 1/e. s24d

From the expression of the functionYa, Eq. (21), and the
initial condition ss0d=s2a−1dsK+1d / sK−1d−1, one com-
putes the value of thecritical entry rate

ac =
K

sK + 1d
+

K − 1

2sK + 1d
W−1S− expH− VD

sK + 1d2

sK − 1d
− 1JD .

s25d

From the discussion of the phase diagram and the general
properties of the domain wall, one already infers that

FIG. 21. Domain wall positionxw (a) and heightDw (b) as a
function of the exit rateb for different values of the entrance ratea
at VD=0.1 andK=3. Fora=ac andb=1/2 a domain wallforms at
the right end of the system with an infinitesimal heightDw. For exit
ratesb.1/2, both domain wall positionxw and heightDw become
independent ofb. Changes in the exit rate only affect the size and
shape of the boundary layer on the right end, but not the bulk
density profile.

FIG. 22. Average density profiles computed analytically in the
inviscid limit expressed in terms of LambertW function (dashed
lines) and numerically for«=10−3 within a mean-field approxima-
tion (solid smooth line). Parameters area=ac [see Eq.(25) for the
analytic expression], b=0.5,VD=0.1 and different values ofK. The
profile is entirely given by the left solutionra for the value of the
entry rateac, defined by the conditionrasx=1d=1/2, andb=1/2.
Note that in this case,ra matches simultaneously the left and the
right boundary conditions.
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0,a,1/2 for not too large values ofVD andK.
The set

sa = acsK,VDd,b = 1/2,K,VDd s26d

defines a two-dimensional smooth manifold in parameter
space(critical manifold).

In order to study the critical properties close to this mani-
fold we apply standard methods of bifurcation theory
[65–67]. We consider a smooth path in the region of param-
eter space close to the critical manifold defined above. At
some pointC this path will cross the critical manifold. The
small quantities that describe the behavior of the domain
wall close to the critical manifold are the distance from the
right end side,dxc;1−xw, and the domain wall height,Dw
=rbsxwd−rasxwd. These quantities will be expressed to lead-
ing order in terms of the small deviations from the critical
point da=a−ac, db=b−1/2, andsimilarly for dVD anddK.

The matching condition of the left and right currents,
rasxwd+rbsxwd=1, can be rewritten in terms of reduced den-
sitiess assasxwd+sbsxwd=−2. As a consequence, the solu-
tion close to the critical point writes assa,bsxwd=−17Ds,
where we have introduced the reduced domain wall height
Ds as another small quantity. The relation betweendx and
Ds can be obtained by expanding the equality

sbexpssbd = − Ybsxwd, s27d

leading to

dx , sDsd2, s28d

where the prefactor can be explicitly computed and depends
only on the value of the system parameters at the critical
point C. A second relation connectingDs to the small dis-
tancesda ,db ,dK, anddVD arises from the definition of the
LambertW-function usuexpssd=Y by taking the ratio

sb

sa

expssb − sad =
Ybsxwd
Yasxwd

. s29d

The important observation is that the right-hand side is inde-
pendent of the domain wall positionxw; see Eq.(21). Ex-
panding Eq.(29) to leading order, one obtains

sDsd3 , dO = Aada + Absdbd2 + AKdK + AVdVD, s30d

wheredO is a distance along a generic path that ends on the
critical manifold. We do not consider the nongeneric case
where the critical manifold is approached tangentially. Then
one finds power laws different from those presented below
for the generic case.

As before, the coefficientsA can be computed explicitly
and shown to depend only on the rates at the critical pointC.
Interestingly, the distancedO does not exhibit a linear term
in db. This is due to the singular behavior of the density
profile rasxd close to the right boundary at the critical point
C; see Fig. 22. Combining the two expansions, one finds the
following power laws:

dx , dO2/3, Dw , dO1/3. s31d

The validity of these exponents is confirmed numerically in
Fig. 23. We also checked that the amplitudes in the expan-
sions (31) coincide with those obtained by the numerical
data.

C. Further properties of the domain wall position

In this section we discuss how the position of the domain
wall xw moves upon changingVD for fixed a andK.1 and
a set of different values forb. In the first quadrant,
a ,b,1/2, and for very small values ofVD the coexistence
phase is confined to a narrow strip parallel to the diagonal
a=b; see Fig. 19(a). It extends to the quadrant
a,1/2,b.1/2, where boundary layers form. On the other

FIG. 23. Double decimal logarithmic plots of
the critical behavior of the domain wall height,
Dw, and position from the right end side, 1−xw.
We obtained the plot numerically with the pro-
gram MAPLE, release 7, using the analytic mean-
field solution in the vicinity of the critical pointC
and applying the matching condition over the left
and right currents,jasxwd= jbsxwd. (a) As a func-
tion of a starting from the pointC on the critical
manifold with coordinatesac=0.038 532. . .,b
=1/2, VD=0.1, andK=3. (b) As a function ofb
starting from the pointC on the critical manifold
with coordinatesa=0.038 532. . .,bc=1/2, VD

=0.1, andK=3. (c) As a function ofK from the
point C on the critical manifold with coordinates
a=0.2,b=1/2,VD=0.051 443. . ., andKc=3. (d)
As a function of VD from the point C on the
critical manifold with coordinatesa=0.2, b
=1/2, VD,c=0.051 443. . ., andK=3. The value
of VD,c can be easily obtained from Eq.(21) and
the initial conditionss0d. Note the different scal-
ing regime for the exit rateb.
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hand, for very largeVD the coexistence phase corresponds to
the regiona,1−rl, see Sec. IV B 2. The interesting features
therefore arise in the region ofa,1−rl and b,1/2. We
consider a path in the phase diagram with fixeda ,b, andK
and follow how it intersects the phase boundaries of the
2-phase coexistence region LD-HD asVD is increased. From
Fig. 24 one can distinguish three cases.

For a,b the system is in a LD phase for very smallVD.
Then, at a critical value ofVD it enters the LD-HD region
where a domain wall forms at the right boundary. A further
increase ofVD results in a change of the domain wall posi-
tion to the left, asymptotically reaching the left boundary for
very large values of the detachment rateVD.

For b,a, the system is in the HD region for smallVD.
By increasing the detachment rate, it enters the LD-HD re-
gion. Differently from the previous case, the domain wall
now forms at the left boundary, it moves to the right up to a
maximal positionxm for intermediate values ofVD, and fi-
nally for largeVD it moves back to the left boundary with
the same asymptotic behavior as the previous case.

For b=a, the system remains in the two-phase coexist-
ence region LD-HD for all values of the detachment rateVD.
One can prove, using the analytic solution(23a) and (23b),
that the domain wall position stays finite even in the limit
VD→0+ and is given by

xw =
ss1df1 + ss0dg
2fss0dss1d − 1g

, s32d

wheress0d andss1d are the usual boundary conditions writ-
ten in terms of the model parameters; see Eq.(17). Interest-
ingly, the domain wall positionxw obtained fora=b and
vanishing VD does not reduce to the value given by the
mean-field continuum approximation in a pure TASEP, i.e.,
xw=1/2. In order to regain the TASEP position, the binding
constantK has to approach the unity. Moreover, from Eq.

(32) one finds that in the limita=b→1/2−, the positionxm
is a singular function of the binding constant close toK
=1+.

The previous discussion corroborates the fact that the
Langmuir kinetics constitutes a singular perturbation of the
TASEP even in the limit of small rates, yielding additional
features that are generated by the competition between the
two dynamics.

VI. CONCLUSIONS

We have presented a detailed study of a model for driven
one-dimensional transport introduced recently in Ref.[17],
where the dynamics of the totally asymmetric simple exclu-
sion process has been supplemented by Langmuir kinetics.
This nonconservative process introduces competition be-
tween boundary and bulk dynamics. The model is inspired
by essential properties of intracellular transport on cytoskel-
etal filaments driven by processive motor proteins[35,68].
These molecular engines move unidirectionally along cy-
toskeletal filaments and simultaneously are subject to
binding/unbinding kinetics between the filament and the cy-
toplasm. The processivity of the motors implies low rates of
detachment. Attachment rates can be easily tuned by chang-
ing the concentration of motors in the cytoplasm. In particu-
lar one may obtain very low attachment rates using a low
volume concentration of motors.

The nonconservative dynamics proposed introduces a
nontrivial stationary state, with features qualitatively differ-
ent from both the totally asymmetric simple exclusion pro-
cess and Langmuir kinetics. The competing dynamics leads
to an unexpected spatial modulation of the average density
profile in the bulk. For extended regions in parameter space,
we find that the density profile exhibits discontinuities on the
scale of the system size which is characteristic for phase
separation. Furthermore, the coexisting phases manifest
themselves by a domain wall that, contrary to the TASEP, is
localized in the bulk. In contrast to previous models[26,27],
the localization is not induced by local defects, but arises via
a collective phenomenon based on a microscopically homo-
geneous bulk dynamics. The resulting phase diagram is to-
pologically distinct from the totally asymmetric exclusion
process and exhibits additional phases.

An analytic solution for the density profile has been de-
rived in the context of a mean-field approximation in the
continuum limit. The properties of the average density for
different kinetic rates are encoded in the peculiar features of
the LambertW function. In particular, the discovery of a
branching point is a prerequisite to rationalizing the behavior
of the solution. The analytic solution has allowed us to trace
and study in detail the properties of the phase diagram. We
found that the cases of equal and different binding rates give
rise to rather distinct topologies in the phase diagram. The
limiting cases for small or large kinetic rates have been com-
puted analytically. We have identified special points of the
phase diagram which are the analog of the “triple point”(viz.
where all three phase boundaries meet) of the totally asym-
metric simple exclusion process. There, a domain wall builds
up with infinitesimal height at the boundary, exhibiting criti-

FIG. 24. Domain wall positionxw in logarithmic scale as a func-
tion of VD at a=0.2,VD=0.051 443. . . andK=3 and different val-
ues ofb. If b.a the domain wall builds up from the right bound-
ary, while for b,a from the left boundary. Fora=b the domain
wall approaches the positionxm which is independent of the de-
creasing detachment rateVD. At largeVD the domain wall position
xw always moves to the left boundary as 1/VD.
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cal features characterized by unusual mean-field exponents.
Finally, we have discussed some limiting cases in which the
properties of the totally asymmetric simple exclusion process
in the mean-field approximation are recovered.

Let us give some more intuitive arguments on the domain
wall formation and localization. In the limit of large system
sizes, the corresponding time-dependent version of Eq.(11)
which governs the dynamics of the “coarse-grained” density
r reads

]tr + s1 − 2rd]xr = FA − FD. s33d

One can easily see that on hydrodynamic scales the source
contribution on the right-hand side is negligible compared to
the terms related to the transport dynamics. On these scales,
the local dynamics is essentially described by mass conser-
vation just as in the totally asymmetric exclusion process.
Neglecting the source contribution, one can give an implicit
analytic solution of Eq.(33) by standard methods of partial
differential equations[52,53]. From such an analysis, one
can infer the mechanism of the formation of density discon-
tinuities such as shocks on the hydrodynamic scale, which
usually build up in finite time. An interesting feature of the
domain wall is also its slopeSw [69] as a function of the
system sizeN. In Fig. 25 we show the slope of the domain
wall as obtained from Monte Carlo simulation for growing
system sizeN. We find the scaling lawSw,Nh with the
exponenth=0.50±0.05. This result is fully compatible with
the scaling exponenth=1/2 computed for a pure totally
asymmetric exclusion process. Note that the mean-field ap-
proximation provides a wrong exponenthMFA =1. The soft-
ening of the slope compared to mean-field was recently ex-
plained in Ref. [31,32] on the basis of domain wall
fluctuations[70]. In this picture, the fluctuating domain wall
performs a random walk just like in the totally asymmetric
exclusion process. However, since on a global scale there is
no mass conservation due to the Langmuir kinetics, the cur-

rent is space dependent and drives the domain wall to an
equilibrium position corresponding to a cusp in the current
profile. Such domain wall behavior can be rephrased in terms
of a random walk in the presence of a confining potential
[71]. This picture also suggests that the exponent for the
slope of the domain wall is exactly given byh=1/2.

It would be interesting to study how the case of equal
rates can be obtained by a limiting procedure of the case with
slightly different rates. The change of topology in the phase
diagrams should be contained in the analytic solution, how-
ever, one suspects from Eq.(21) that an essential singularity
appears. Furthermore, one would like to see if possible vari-
ants of our model introduce additional features similar to
what has been done for a reference dynamics, i.e., the totally
asymmetric exclusion process[21].
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